
WSimWorkload Simulator

Script Guide and Reference
Version 1 Release 1

SC31-8946-01

���

WSimWorkload Simulator

Script Guide and Reference
Version 1 Release 1

SC31-8946-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
517.

Second Edition (October 2015)

This document applies to the Workload Simulator Version 1 Release 1 (program number 5655-I39), an IBM licensed
program, which runs under the following operating systems:

MVS/370 (MVS/SP Version 1 or later)

MVS/Extended Architecture (MVS/SP Version 2 or later)

MVS/Enterprise System Architecture (MVS/SP Version 3 or later)

OS/390

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

© Copyright IBM Corporation 1983, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables ix

Figures xi

About this book xiii
Who should read this book xiii
How to use this book xiii
Typographic conventions xv
Where to find more information xvi

Part 1. WSim language statements. . 1

Chapter 1. Introduction 3
What is Workload Simulator? 3
Coding scripting language statements 3

Coding the name field 3
Coding the operand field 4

Comment statements 5
Continuing statements 5

Continuing text data. 5
Coding literal text DBCS data. 6

Chapter 2. Understanding network
hierarchies 9
Network definition 9
Sequence of network configuration definition
statements 9

CPI-C simulation 9
VTAMAPPL simulation 10
TCP/IP client simulation 10
Combined network 11

Definition of statement groups 11
General simulation statements 11
APPCLU group 12
VTAMAPPL group 12
TCPIP group 12

Sequence of valid network configuration statements 13

Chapter 3. Defining a network
configuration 17
Summary of operands for configuration statements 17

Chapter 4. Defining general simulation
statements 23
DIST - PATH distribution statement 23
FE - future event statement 24
FILE - FTP FILE definition statement 25
IF - network-level logic test statement 27
INCLUDE - message text definition statement . . . 40
MSGDISK - control block paging data set definition
statement 40
NTWRK - network definition statement 42
NTWRKLOG - network log data set statement . . 49

PATH - message generation sequence statement . . 50
RATE - rate table statement 51
RN - random number statement 52
SIDEEND - side information table end statement . . 53
SIDEENT - side information table entry statement 53
SIDEINFO - side information table begin statement 54
UDIST - UTBL distribution statement. 54
UTBL - user data table statement 55
UTI - user time interval statement 56

Chapter 5. Defining CPI-C simulation
statements 59
Summary of operands 59

APPCLU - APPCLU statement 60
TP - CPI-C transaction program definition
statement 64

Chapter 6. Defining VTAMAPPL
simulation statements 71
Summary of operands 71

LU - VTAMAPPL logical unit definition
statement 73
VTAMAPPL - VTAMAPPL statement 85

Chapter 7. Defining TCP/IP client
simulation statements 87
Summary of operands 87

DEV - TCP/IP device definition statement . . . 89
TCPIP - TCP/IP connection definition statement 100

Chapter 8. Defining the message
generation deck 103
Message generation statement categories 103

General definition statements 103
SNA simulation statements 104
3270 simulation statements 104
5250 simulation statements 105
CPI-C simulation statements 105

Message generation statement descriptions . . . 106
BRANCH - branch statement 106
BTAB - back tab key statement 106
CALC - calculate statement. 107
CALL - call subroutine statement 108
CANCEL - cancel event statement 109
CHARSET - character set select statement . . . 109
CLEAR - clear key statement 110
CLEARPTN - clear partition key statement . . 111
CMD - program function key statement . . . 111
CMND - SNA command statement 112
CMxxxx - CPI-C simulation statement group 118
COLOR - display color select statement . . . 124
CTAB - conditional tab statement. 125
CURSOR - position cursor statement 125
CURSRSEL - cursor select key statement . . . 127

© Copyright IBM Corp. 1983, 2015 iii

DATASAVE - save data statement 128
DEACT - deactivate logic test and ON condition
statement. 138
DELAY - delay statement 139
DELETE - delete key statement 140
DUP - dup key statement 141
ENDTXT - end message generation deck
statement. 141
ENTER - enter key statement 142
EREOF - erase to end of field key statement . . 142
ERIN - erase input key statement. 142
ERROR - error simulation statement. 143
EVENT - event statement 143
EXIT - user exit statement 145
FLDADV - field advance key statement . . . 146
FLDBKSP - field backspace key statement . . . 147
FLDMINUS - field minus key (F-) statement . . 147
FLDPLUS - field exit or field plus key (F+)
statement. 147
FM - field mark key statement. 148
HELP - help key statement 148
HIGHLITE - display highlight select statement 149
HOME - home key statement 149
IF - message generation deck logic test
statement. 150
INSERT - insert statement 164
JUMP - jump key statement 165
LABEL - label statement 165
LCLEAR - local clear statement 166
MONITOR - monitor statement 168
MSGTXT - message generation deck begin
statement. 168
MSGUTBL - user data table (Member) statement 170
NL - new line key statement 171
ON - on statement. 171
OPCMND - operator command statement . . . 173
PA - program access key statement 173
PF - program function key statement 174
PRINT - print key statement 174
PUSH - push statement 175
QUEUE - queue statement 175
QUIESCE - quiesce statement 176
RESET - reset key statement 176
RESP - SNA response statement 176
RETURN - return from subroutine statement 177
RH - request/response header statement . . . 178
ROLLDOWN - rolldown key statement. . . . 180
ROLLUP - rollup key statement 180
SCROLL - scroll key statement 180
SELECT - selector pen detect statement. . . . 181
SET - set counters statement 182
SETSW - set switches statement 187
SETUTI - set UTI statement 188
STOP - stop statement 188
STRIPE - magnetic stripe reader input statement 189
SYSREQ - system request statement 190
TAB - tab key statement 190
TEXT - generate text statement 190
TH - transmission header statement 193
WAIT - wait for response statement 194
WTO - write data to console statement 196

WTOABRHD - write data with abbreviated
header to console statement 197

Chapter 9. Data field options 199
Description of data field options 199
Example of the length data field options 207

Chapter 10. Data locations. 209

Chapter 11. Terminal, device, and
logical unit types 211

Chapter 12. Counters and switches 213

Chapter 13. Format control statements 215

Chapter 14. Conditions logic test not
evaluated 217

Part 2. Guide to using STL and the
STL Translator 219

Chapter 15. Introducing the Structured
Translator Language 221
What is STL? 221

What do STL programs contain? 221
How do STL programs relate to a script? . . . 222
Using STL 222
Using message generation statements with STL 222

Using the STL Translator 223
What does an STL input data set look like? . . . 224

Chapter 16. Designing STL programs 227
Understanding the test plan for the simulated
network 227
Identifying special requirements 228

Using products, programs, and specific
resources 228
Deciding how to run the test 228
Including message generation statements in STL
programs 229

Planning your programs. 229
Structuring programs and procedures 229
Determining message content 230

Documenting your STL programs 230
Testing your STL programs 231
Facilitating STL program development 231

Chapter 17. Understanding the
elements of an STL program 233
What are the basic elements of an STL program? 233
What does an STL statement include? 233
Using STL syntax 234
Using variables and constants 237

Variable types 238
Variable classes 238
Reserved variables 239

iv WSim Script Guide and Reference

Constant types 239
Named constants 241

Using declarative statements 242
Declaring variable types and classes 243
Declaring named constants 243
Declaring user tables 244
Allocating WSim resources 246

Using assignment statements 246
Using keyword statements 247
Using expressions 248

Integer expressions 248
String expressions 248
Bit expressions 249

Using functions 249
The SUBSTR function 250
The INDEX function 251

Including message generation statements in STL
programs 251
Including data from other data sets 252
Defining user exits 253
Using CPI-C verbs. 253

Chapter 18. Controlling STL program
flow 255
Using structured flow-of-control statements . . . 255

The CALL statement 255
The IF/THEN/ELSE statement group 256
The SELECT statement group 257
The DO statement groups 258

Using conditions and relational operators 261
Simple conditions 262
Complex conditions 265

Chapter 19. Generating messages for
an STL program 267
Simulating keyboard actions 267

Simulating keyboard text entry 267
Simulating device keys 268
Simulating cursor movement 270
Simulating the SNA attention key 271

Simulating DBCS terminals 271
Logic testing DBCS data. 272

Simulating other types of text entry 272
Obtaining data 273

Using random numbers 273
Obtaining the date and time 273
Using device IDs 274

Simulating operator decisions 274
Using user tables 275

Defining user tables 275
Selecting entries in a user table 275
Comparing entries. 276

Identifying cursor position and display
characteristics 277
Logging on and off an application 278

Logging on SNA LUs. 278
Logging off SNA LUs 281
Logging on a TCP/IP Telnet 3270 terminal . . 282
Logging off a TCP/IP Telnet 3270 terminal . . 282

Generating SNA terminal messages 283

Using the SETTH statement 283
Using the SETRH statement 283
Using the SNACMND statement 284

Chapter 20. Transmitting and
receiving messages from an STL
program 285
Transmitting messages 285

Using the TRANSMIT statement 285
Interrupting program execution 286

Controlling intermessage delays 288
Using the network definition to control delays 289
Using STL statements to control delays 290
Evaluating the load on the WSim system . . . 291

Receiving messages 291
Testing asynchronous conditions 291

Using the ONIN and ONOUT statements . . . 292
Using the WAIT UNTIL and QUIESCE UNTIL
statements 298
Setting up asynchronous conditions 299

Posting and signaling events 300
Posting events 300
Using signals 303
Canceling events 305

Chapter 21. Monitoring and
automating your test 307
Monitoring the test 307
Logging test data 308
Writing verify records 308
Automating your test. 308
Identifying network resources 309

Chapter 22. Using the STL Translator 311
Methods for storing scripts 311
Input to the STL Translator 314
Output created by the STL Translator 314

Printed listing 314
MSGDD partitioned data set members 317
INITDD partitioned data set members 318
Sequential output data set 318
Temporary work data sets 319

Running the STL Translator 319
Using STL Translator execution parameters . . 319
Using JCL to run the STL Translator 321
Using a TSO CLIST to run the STL Translator 322
Using the WSim/ISPF Interface 322
Data set requirements 323
STL Translator return codes 324

Chapter 23. Combining STL programs
and network definitions 325
Including network definition statements in STL 325
Structuring STL programs 326

Organizing your STL programs 326
Coding multiple programs in one STL input
data set 326
Avoiding misuse of procedure calls 327
Naming programs, procedures, and user tables 328

Contents v

Referencing STL programs in your network
definition. 329
Combining STL procedures from different STL
programs 333

Chapter 24. Debugging your STL
programs 337
Finding and correcting STL Translator syntax errors 337

Reading error messages 337
Using the variable dictionary to find errors . . 338
Reading the variable dictionary 338
Using the event dictionary to find errors . . . 340
Reading the event dictionary 340
Correcting errors 341

Obtaining STL trace records 341
Creating statement correlation records 341
Logging STL trace records 342
Printing STL trace records 343

Reading STL trace output 343
Tracing a sample STL program 345

The sample STL program and network
definition. 346
The sample printed listing 347
The Loglist Utility output 347

Part 3. Reference to STL
statements and functions 353

Chapter 25. Reference to STL
statements 355
@EJECT 355
@GENERATE 355
@IFNUM 357
@INCLUDE 358
@NETWORK 360
@PROGRAM 361
ABORT 362
ALLOCATE 363
BIT 364
BTAB 365
CALL 365
CANCEL 366
CHARSET 368
CMACCP — Accept_Conversation 369
CMALLC — Allocate 369
CMCFM — Confirm 370
CMCFMD — Confirmed 371
CMDEAL — Deallocate 372
CMECS — Extract_Conversation_State 372
CMECT — Extract_Conversation_Type 373
CMEMN — Extract_Mode_Name 374
CMEPLN — Extract_Partner_LU_Name 375
CMESL — Extract_Sync_Level. 375
CMFLUS — Flush 376
CMINIT — Initialize_Conversation 377
CMPTR — Prepare_To_Receive 378
CMRCV — Receive 378
CMRTS — Request_To_Send 380
CMSCT — Set_Conversation_Type 381

CMSDT — Set_Deallocate_Type 381
CMSED — Set_Error_Direction 382
CMSEND — Send_Data 383
CMSERR — Send_Error 384
CMSF — Set_Fill 385
CMSFM5 — Set_FM_Header_5_Extension 386
CMSLD — Set_Log_Data 387
CMSMN — Set_Mode_Name 388
CMSPLN — Set_Partner_LU_Name 389
CMSPTR — Set_Prepare_To_Receive_Type . . . 390
CMSRC — Set_Return_Control 390
CMSRT — Set_Receive_Type 391
CMSSL — Set_Sync_Level 392
CMSST — Set_Send_Type 393
CMSTPN — Set_TP_Name 393
CMTRTS — Test_Request_To_Send_Received . . . 394
COLOR 395
CONSTANT 396
CTAB 397
CURSOR 397
CURSRSEL 398
DEACT 399
DELAY 400
DELETE 401
DO statements 402

Simple DO groups. 402
DO WHILE loops 403
DO FOREVER loops 403
Iterative DO loops. 404
DUP 405
ENDTXT 405
ENDUTBL 405
EREOF 406
ERIN 406
EXECUTE 406
FLDADV 407
FLDBKSP. 407
FLDMINUS 408
FLDPLUS 408
FM 408
HIGHLITE 409
HOME 409
IF 410
INITSELF 410
INSERT 412
INTEGER 412
ITERATE 413
JUMP 413
LCLEAR 414
LEAVE 414
LIGHTPEN 415
LOG 415
MONITOR 416
MSGTXT 416
MSGUTBL 417
NL 418
NOP 418
NORESP 418
ON SIGNALED 419
ONIN and ONOUT 420
OPCMND 421

vi WSim Script Guide and Reference

POST 422
PUSH 423
QSIGNAL 424
QUEUE 425
QUIESCE. 425
RESET event 426
RESET key 427
RETURN 428
SAY 428
SCROLL 429
SELECT 429
SETRH 430
SETTH 432
SIGNAL 433
SNACMND 434
STRING 437
STRIPE 438
SUSPEND 438
SYSREQ 440
TAB 440
TERMSELF 441
TRANSMIT 442
TYPE 443
USEREXIT 444
UTI. 445
VERIFY 445
WAIT 446

Chapter 26. Reference to STL
functions 449
APPCLUID 449
ATTR3270 449

Restrictions on use of ATTR3270 function in
asynchronous conditions 454

BITAND 455
BITOR. 455
BITXOR 456
B2X 457
CCOL 457
CENTER 458
CHAR. 458
CMONTH 459
COFF 459
COPIES 460
CPOS 460
CROW 461
C2D 462
C2X 462
DATE 463
DAY 464
DBCSADD 464
DBCSADJ 465
DBCSDEL 465
DBCS2SB 465
DELSTR 466
DELWORD 466
DEVID 467
D2C 467
E2D 468
FM 469
HEX 469

ID 470
INDEX 471
INSERT 471
LASTPOS 472
LASTVERB 473
LEFT 473
LENGTH 474
LUID 475
MONTH 475
MSGTXTID 475
NETID 476
NL 476
NUMCOLS 477
NUMROWS 477
OVERLAY 477
PATHID 478
POS 479
POSTED 479
PULL 480
QUEUED. 481
RANDOM 481
REPEAT 482
REVERSE. 483
RIGHT 483
RNUM 484
ROWCOL 485
SB2DBCS 485
SB2MDBCS 486
SESSNO 486
SPACE 487
STRIP 487
SUBSTR 488

Restrictions on use of the SUBSTR function in
asynchronous conditions 489

SUBWORD 489
TAB 490
TCPIPID 490
TOD 491
TPID 491
TPINSTNO 492
TRANSLATE 492
UTBL 493
UTBLMAX 494
UTBLSCAN 495
VTAMAPID 496
WORD 496
WORDINDEX 497
WORDPOS 497
WORDS 498
X2B 498
X2C 499
YEAR 499

Contents vii

Chapter 27. Keys valid for particular
devices 501

Chapter 28. Expressions not allowed
in asynchronous conditions 503

Chapter 29. STL reserved words . . . 507

Chapter 30. STL Variable and Named
Constant Declarations for CPI-C Verb
Parameters 511
STL variable declarations for CPI-C verb
parameters 511
STL named constant declarations for CPI-C verb
parameters 511

Part 4. Appendixes 515

Notices 517
Trademarks and service marks 518

Glossary 519

Bibliography. 529
WSim Library 529
Related publications 529

Index 531

viii WSim Script Guide and Reference

Tables

1. Operand continuation methods 5
2. Literal text DBCS statements and operands 6
3. Sequence of valid network configuration

statements 13
4. WSim network configuration operands 17
5. CPI-C simulation operands 59
6. VTAMAPPL simulation operands 71
7. TCP/IP simulation operands 87
8. Defaults for PORT 96
9. Statement prototypes of CPI-C calls 120

10. Data locations for non-SNA terminals 209
11. Data locations for SNA terminals 209
12. Line, terminal, and device counters 213
13. STL relational operators and associated data

types 262
14. Establishing sessions—SNA LUs 281
15. Argument List for SNACMND Statement

Based on Command Type 434
16. Definitions of EBCDIC characters returned by

ATTR3270. 451

© Copyright IBM Corp. 1983, 2015 ix

x WSim Script Guide and Reference

Figures

1. Use of save areas and counters to specify
CPI-C parameters 124

2. Three methods of using the STL Translator 224
3. Placement of declarative statements in an STL

program 242
4. Using the STL Translator and the

Preprocessor to store scripts. 312
5. Sample printed listing from STL translator,

part 1 of 2 316
6. Sample printed listing from STL Translator,

part 2 of 2 317
7. STL input data set translated to message

generation statements 327
8. Example of misuse of calls in separate STL

programs 328

9. Two STL programs. 331
10. Network definition to use two STL programs 331
11. Relationship of PATH statement and STL

programs 332
12. STL program containing multiple STL

procedures 333
13. Sample Loglist Utility Output with STL Trace

Records, part 1 of 2 344
14. Sample Loglist Utility output with STL trace

records, part 2 of 2. 345
15. STL printed listing for STL trace output

example 347

© Copyright IBM Corp. 1983, 2015 xi

xii WSim Script Guide and Reference

About this book

This book is a guide and reference for the formats of the Workload Simulator
(WSim) language statements. This book is intended to help you write network
definitions and message generation decks.

This book also provides information about a programming language, the
Structured Translator Language (STL), that enables you to create message
generation decks for your simulated network. These message generation decks
enable your simulated terminals to send and receive messages. This book describes
the STL Translator, a utility that converts STL programs into the message
generation decks that WSim uses to generate messages. The STL Translator also
stores network definitions that WSim uses to define your simulated network.
Additionally, this book contains information about how to debug STL programs.

Who should read this book
This book is intended for people responsible for coding message generation decks
for a simulated network. It provides detailed syntax and special considerations for
coding scripting language statements. It also provides instructions for using the
STL programming language and includes a reference section giving details on
syntax and usage for specific keywords and functions.

For an overview of WSim and how to begin using it, refer to WSim User's Guide.
Refer to Creating WSim Scripts for information about defining your simulated
network. You should also be familiar with the terminals you are simulating and
the applications you plan to test.

How to use this book
This book contains three parts: the language statements and their associated
operands, an introduction to STL concepts and programming procedures, and a
reference section that provides detailed information about STL keywords and
functions.

This book contains the following sections:

Part 1, “WSim language statements,” on page 1 explains the language statements
and their operands. It also describes the order in which you should code the
statements when defining a network for simulation. It includes the following
chapters:
v Chapter 1, “Introduction,” on page 3, describes how the language statements are

presented in this book.
Chapter 2, “Understanding network hierarchies,” on page 9, describes the
different network hierarchies you use to define a simulated terminal.

v Chapter 3, “Defining a network configuration,” on page 17, describes the
statements you use to define network configurations.

v Chapter 4, “Defining general simulation statements,” on page 23, describes the
statements you use to define the general network configuration.

© Copyright IBM Corp. 1983, 2015 xiii

v Chapter 5, “Defining CPI-C simulation statements,” on page 59, describes the
network configuration definition statements you use to define the simulation of
a Common Programming Interface Communications (CPI-C) transaction
program.

v Chapter 6, “Defining VTAMAPPL simulation statements,” on page 71, describes
the network configuration definition statements you use to define the simulation
of SNA logical units through the VTAM application interface.

v Chapter 7, “Defining TCP/IP client simulation statements,” on page 87, describes
the network configuration definition statements you use to define simulations of
Telnet 3270, 3270E, 5250, and Network Virtual Terminal client devices, File
Transfer Program (FTP) clients, or Simple TCP or UDP clients.

v Chapter 8, “Defining the message generation deck,” on page 103, describes the
scripting language statements you use to define the data and control message
generation.

v Chapter 9, “Data field options,” on page 199, describes the data field options
used to insert variable data into messages or data fields that are constructed
duringWSim processing.

v Chapter 10, “Data locations,” on page 209, describes the locations used to
evaluate logic tests.

v Chapter 11, “Terminal, device, and logical unit types,” on page 211, lists the
types of terminals that WSim can simulate.

v Chapter 12, “Counters and switches,” on page 213, lists which set of counters are
allocated to each simulated device.

v Chapter 13, “Format control statements,” on page 215, lists the statements that
you can use to format network listings for easier readability.

v Chapter 14, “Conditions logic test not evaluated,” on page 217, lists the
conditions under which logic tests are not evaluated.

Part 2, “Guide to using STL and the STL Translator,” on page 219 provides an
overview of STL concepts and functions. Read this part to obtain general
information about the elements and capabilities of the language and also to learn
how to program for specific situations and terminals. It includes the following
chapters:
v Chapter 15, “Introducing the Structured Translator Language,” on page 221

introduces STL.
v Chapter 16, “Designing STL programs,” on page 227 discusses factors to consider

when designing an STL program.
v Chapter 17, “Understanding the elements of an STL program,” on page 233

describes the various programming elements that compose an STL program.
v Chapter 18, “Controlling STL program flow,” on page 255 explains how to

control the order in which your program is executed.
v Chapter 19, “Generating messages for an STL program,” on page 267 describes

how to provide data to be used in messages sent by your simulated terminals.
v Chapter 20, “Transmitting and receiving messages from an STL program,” on

page 285 explains how to transmit and receive messages, how to control
intermessage delays, and how to use events to synchronize terminal activities.

v Chapter 21, “Monitoring and automating your test,” on page 307 discusses ways
to operate and monitor your simulation.

v Chapter 22, “Using the STL Translator,” on page 311 explains how to use the
STL Translator to translate your STL programs into message generation
statements and to store your network definitions.

xiv WSim Script Guide and Reference

v Chapter 23, “Combining STL programs and network definitions,” on page 325
provides information about integrating network definitions with your STL
program.

v Chapter 24, “Debugging your STL programs,” on page 337 describes how to use
printed listings to correct errors in your STL programs and explains how you
can use the output from the Loglist Utility to examine how your STL program
worked.

Part 3, “Reference to STL statements and functions,” on page 353 contains reference
information about STL statements and functions. Statements and functions are
presented alphabetically to provide quick access to details about the language. It
includes the following chapters:
v Chapter 25, “Reference to STL statements,” on page 355 provides syntax and a

detailed description for each statement used in the STL programming language.
v Chapter 26, “Reference to STL functions,” on page 449 provides syntax and a

detailed description for each function used in the STL programming language.
v Chapter 27, “Keys valid for particular devices,” on page 501, lists device key

statements and AID keys that can be used for particular devices.
v Chapter 28, “Expressions not allowed in asynchronous conditions,” on page 503,

lists the on types of expressions are not allowed on ONIN, ONOUT, or ON
SIGNALED statements.

v Chapter 29, “STL reserved words,” on page 507, lists STL keywords, functions,
and reserved variable names that may not be used as user-defined variable or
constant names.

v Chapter 30, “STL Variable and Named Constant Declarations for CPI-C Verb
Parameters,” on page 511, contains a comprehensive list of STL variable
declarations for CPI Communications (CPI-C) verb parameters.

The Glossary lists the terms that are used in this book.

The Bibliography lists the related publications that you can use to find more
information on networks.

Typographic conventions
The following typographic conventions are used in this book:

Convention Meaning

UPPERCASE Used for STL reserved words, including keywords, function names,
and reserved variables. These words must be entered with the
characters shown, but they do not have to be entered in uppercase.

italic Indicates items for which you must fill in information.

{ } Indicates that the stacked items enclosed in braces are alternatives.
You must include one of the items.

[] Indicates that the items enclosed in brackets are optional.

. . . Indicates that part of the text or example has been omitted. The
missing text is irrelevant to the information being discussed. The
three dots may be either vertical or horizontal.

About this book xv

Where to find more information
The following list shows the books in the WSim library. For more information
about related publications, see the “Bibliography” on page 529.

Planning, Installation, and Operation
WSim User's Guide SC31-8948
WSim Messages and Codes SC31-8951
WSim Test Manager User's Guide and Reference SC31-8949

Resource and Message Traffic Definition
Creating WSim Scripts SC31-8945
WSim Script Guide and Reference SC31-8946
WSim Utilities Guide SC31-8947

Customization
WSim User Exits SC31-8950

xvi WSim Script Guide and Reference

Part 1. WSim language statements

© Copyright IBM Corp. 1983, 2015 1

2 WSim Script Guide and Reference

Chapter 1. Introduction

This chapter introduces Workload Simulator (WSim) and explains the format used
to code language statements.

What is Workload Simulator?
WSim is a terminal and network simulation tool. You can use WSim to determine
system performance and response time, to evaluate network design, to perform
functional testing, and to automate regression testing. Used as a basic tool in a
comprehensive test plan, WSim increases the effectiveness of the overall test by
providing automated, repeatable test conditions with minimal resources.

WSim runs on any IBM host processor that supports:
v MVS/370 (MVS/SP Version 1 or later)
v MVS/XA (MVS/SP Version 2 or later)
v MVS/ESA (MVS/SP Version 3 or later)
v OS/390

In this book, MVS is any environment running MVS, MVS/XA, or MVS/ESA
(unless explicitly stated otherwise).

Coding scripting language statements
WSim scripting language statements consist of network configuration statements
and message generation statements. To code scripting language statements, you
can use the following three fields:

Name The Name field begins in column 1 and contains a label to be associated with
the statement. Unless otherwise noted, the Name field can contain a
maximum of eight characters.

Statement The Statement field is separated from the Name field by at least one blank
and contains the actual scripting language statement.
Note: Regardless of whether or not you code the Name field, the Statement
field cannot begin in column 1.

Operand The Operand field is separated from the Statement field by at least one blank
and contains the operands or text data for the statement. The Operand field
cannot extend beyond column 71.

Note: You can code scripting language statements in mixed case.

Coding the name field
Normally, the Name field can contain a maximum of eight characters. For each
type of statement, the following characters are valid:
v Network configuration statements. The valid characters are a - z, A - Z, 0 - 9,

and all symbols except WSim delimiters, which are () + - = , . │ & and blank.
v Message generation statements. The valid characters are a - z, A - Z, 0 - 9, and

the symbols #, @, and $.

© Copyright IBM Corp. 1983, 2015 3

Note: See the specific statement for any other restrictions that apply to the Name
field. For example, the first letter of a name may have to be alphabetic, or a name
may have to be completely numeric.

Coding the operand field
There must be at least one blank between a statement and its operands. See the
specific statement for a list of the available operands for the statement. The
following conventions are used in this manual to describe statement operands:
v Required operands are not enclosed in brackets and are listed first in

alphabetical order. Optional operands follow the required operands. They are
enclosed in brackets and are also listed in alphabetical order.

v An operand is described by its keyword name in uppercase, followed by an
equal sign and a variable value that you can choose.

v You must code the following symbols exactly as they appear for the statement
description:

Asterisk *

Comma ,

Dollar sign $

Equal sign =

Hyphen -

Parentheses ()

Period .

Plus sign +

Quote '

v Lowercase italicized letters and words represent variables for which you can
supply specific information. The operand description, which follows each
statement description, lists the valid variable values and any restrictions for the
values.

v The following symbols are used for the operand format and should never be
coded as part of an operand value:

Braces { } A stack of items, each contained within braces, represents a set
of alternatives, one of which must be chosen. For example:

{YES}
{NO}

Vertical Bar | Items separated by vertical bars represents a set of alternatives,
one of which must be chosen. For example:

{YES|NO}
Brackets [] Information contained within brackets represents an option that

can be included or omitted when coding the operand. For
example:

[,DISPLAY=(a,b[,c,d])]
Ellipsis ... An ellipsis indicates that a number of items may be coded. For

example:

(integer,...)

4 WSim Script Guide and Reference

Underscore _ An underscored item represents a default value that need not
be coded. For example:

[,RTR={YES|NO}]

If a set of stacked items or items separated by vertical bars, each contained
within braces, is included within a set of brackets, one of the items must be
chosen if the bracketed operand is coded.

Comment statements
You can include comments by coding an asterisk (*) in statement column 1 or by
including text, separated by at least one blank, after the last keyword operand.
Statements that have no defined operands can contain comments after the
Statement field. Statements that have operands must have at least one operand
specified before a comment appears on the statement.

To ensure that comments are stored and listed with the appropriate network
configuration or message generation deck, they should follow, rather than precede,
the NTWRK, MSGTXT, or MSGUTBL statement.

Continuing statements
Statements can be continued between operands. Continuation is indicated with a
comma after the last operand on the line, followed by a blank. The rest of the
operands may be specified on the next line anywhere after the first column, which
must be blank. You must specify at least one operand to continue a statement to
the next line.

Continuing text data
You can also continue most statement operands that specify text data. Use any of
the following methods to continue operand data.
1. Continue the data through column 71 and begin again in column 2 of the next

line. Text data past column 71 will be ignored.
2. Close the text on one line with an ending delimiter and comma and begin

again on the next line with an opening delimiter in any column after column 1
and preceding column 72.

3. Close the text on one line with an ending delimiter and plus sign and begin
again on the next line with an opening delimiter in any column after column 1
and preceding column 72.

The following table shows which operands can be continued and which
continuation method is valid:

Table 1. Operand continuation methods

Statement Operand Continuation Method

CMND DATA=(data) 1,2,3

CMND RESP=(data) 1,3

DATASAVE INSERT=(data) 1,2,3

DATASAVE TABLEI=(data) 1,2,3

DATASAVE TABLEO=(data) 1,2,3

DATASAVE TEXT=(data) 1,2,3

Chapter 1. Introduction 5

Table 1. Operand continuation methods (continued)

Statement Operand Continuation Method

EXIT PARM=(data) 1,2,3

FE COMMAND=(data) 1,2,3

IF LOCTEXT=(data) 1,2,3

IF LOG=(data) 1,2,3

IF TEXT=(data) 1,2,3

IF THEN|ELSE=VERIFY(data) 1,2,3

LOG (data) 1,2,3

MSGUTBL (entry) 1,3

ON THEN=VERIFY(data) 1,2,3

OPCMND (data) 1,2,3

STRIPE (data) 1,2,3

TEXT RESP=(data) 1,3

TEXT (data) 1,2,3

UTBL (entry) 1,3

WTO (data) 1,2,3

WTOABRHD (data) 1,2,3

Coding literal text DBCS data
Table 2 lists the statements and operands where you can code literal text DBCS
data.

Table 2. Literal text DBCS statements and operands

Statement Operand

FE COMMAND

IF (network- and message-level) LOCTEXT
LOG
TEXT
THEN|ELSE=VERIFY(data)

NTWRK HEAD

UTBL (entry)

CMND DATA
RESP

DATASAVE INSERT
TABLEI
TABLEO
TEXT

EXIT PARM

LOG (data)

MSGUTBL (entry)

ON THEN=VERIFY(data)

OPCMND (data)

STRIPE (data)

6 WSim Script Guide and Reference

Table 2. Literal text DBCS statements and operands (continued)

Statement Operand

TEXT (data)
RESP

WTO (data)

WTOABRHD (data)

Refer to , SC31-8945 for examples of coding DBCS data.

Chapter 1. Introduction 7

8 WSim Script Guide and Reference

Chapter 2. Understanding network hierarchies

This chapter describes the network hierarchical concepts involved in defining a
network configuration.

Network definition
You can use the following simulation methods to provide teleprocessing message
traffic to the system being tested:

CPI-C transaction program simulation
To simulate a Common Programming Interface Communications (CPI-C)
transaction program, use the APPCLU and TP statements.

VTAM application simulation
To simulate an SNA logical unit via the VTAM application interface, use
the VTAMAPPL and LU statements.

TCP/IP simulation
To simulate 3270, 3270E, 5250, or NVT devices having Telnet sessions,
client applications that are using the File Transfer Protocol (FTP), or Simple
TCP or UDP clients, use the TCPIP and DEV statements.

Note: You can use all simulation methods in the same network.

Sequence of network configuration definition statements
This section provides examples to show the general order of statements when
configuring various types of networks. Each example contains boxes that represent
a group of statements. Multiple boxes mean that you can code a group more than
once. The boxes are broken down into the individual statements following the
examples.

Refer to Table 3 on page 13 for more information on the order of statements.

CPI-C simulation

NTWRK
┌───────────────────────┐
│ │
│ General │
│ Simulation │
│ Statements │
│ │
└───────────────────────┘

See “General simulation statements”
on page 11 for information about
coding these statements.

┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ APPCLU │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

A CPI-C network consists of one or
more APPCLU groups. See
“APPCLU group” on page 12 for
information about coding this
group.

© Copyright IBM Corp. 1983, 2015 9

[FE] ... You can code one or more Future
Event (FE) statements in a CPI-C
simulation. See “FE - future event
statement” on page 24 for more
information about this statement.

VTAMAPPL simulation

NTWRK
┌───────────────────────┐
│ │
│ General │
│ Simulation │
│ Statements │
│ │
└───────────────────────┘

See “General simulation statements”
on page 11 for information about
coding these statements.

┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ VTAMAPPL │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

A VTAMAPPL network consists of
one or more VTAMAPPL groups.
See “VTAMAPPL group” on page
12 for information about coding this
group.

[FE] ... You can code one or more Future
Event (FE) statements in a
VTAMAPPL simulation. See “FE -
future event statement” on page 24
for more information about this
statement.

TCP/IP client simulation

NTWRK
┌───────────────────────┐
│ │
│ General │
│ Simulation │
│ Statements │
│ │
└───────────────────────┘

See “General simulation statements”
on page 11 for information about
coding these statements.

┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ TCPIP │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

A TCP/IP Client network consists
of one or more TCPIP groups. See
“TCPIP group” on page 12 for
information about coding this
group.

[FE] ... You can code one or more Future
Event (FE) statements in a TCPIP
Client simulation. See “FE - future
event statement” on page 24 for
more information about this
statement.

10 WSim Script Guide and Reference

Combined network

NTWRK
┌───────────────────────┐
│ │
│ General │
│ Simulation │
│ Statements │
│ │
└───────────────────────┘
┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ APPCLU │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

CPI-C Simulation

┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ VTAMAPPL │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

VTAMAPPL Simulation

┌───────────────────────────┐
│ ┌────────────────────────┴──┐
│ │ ┌────────────────────────┴──┐
│ │ │ │
│ │ │ TCPIP │
└──┤ │ Group │

└──┤ │
└───────────────────────────┘

TCP/IP Client Simulation

Definition of statement groups
This section describes the statements used to code the boxes shown in the previous
section. In this section, brackets mean that the statement or group of statements are
optional. The ellipses (...) means that the statement or group of statements may be
coded more than once.

General simulation statements

┌───────────────────────┐
│ │
│ General │
│ Simulation │
│ Statements │
│ │
└───────────────────────┘
[NTWRKLOG]
[MSGDISK]
[RATE] ...
[UTBL] ...
[SIDEINFO

SIDEENT ...
SIDEEND]
[RN] ...
[UDIST] ...
[INCLUDE] ...
[IF] ...

Chapter 2. Understanding network hierarchies 11

PATH ... At least one PATH statement is
required in the network.

[DIST] ...
[UTI] ...
[FILE] ...

APPCLU group

┌───────────────────────────┐
│ │
│ APPCLU │
│ Group │
│ │
└───────────────────────────┘
APPCLU

TP ...
The APPCLU statement defines the
interface WSim will use when
simulating CPI-C transaction
programs.

The TP statement defines a
transaction program to be simulated
using the WSim/VTAM application
program interface.

VTAMAPPL group

┌───────────────────────────┐
│ │
│ VTAMAPPL │
│ Group │
│ │
└───────────────────────────┘
VTAMAPPL

LU ...
The VTAMAPPL statement defines
the interface WSim will use when
executing as a VTAM application
program.

The VTAMAPPL LU statement
defines a half-session to be
simulated using the WSim/VTAM
application program interface.

TCPIP group

┌───────────────────────────┐
│ │
│ TCPIP │
│ Group │
│ │
└───────────────────────────┘
TCPIP

DEV ...
The TCPIP statement is required in
this group. At least one DEV
statement is required under the
TCPIP statement.

12 WSim Script Guide and Reference

Sequence of valid network configuration statements
Table 3 shows the statement types that are valid in a configuration definition. The
statements are listed in the order in which they should be coded. Each statement is
listed with the statements that can follow it, to help you determine what
statements can be repeated or left out, depending on the configuration you are
trying to simulate. Superscripts are used to distinguish between statements that
can have different functions, such as the PATH statement, which may define the
order of message generation decks to be used by a device.

Table 3. Sequence of valid network configuration statements

Statement Can be followed by Comments

NTWRK NTWRKLOG
MSGDISK
RATE
UTBL
SIDEINFO
RN
UDIST
INCLUDE
IF
PATH1

NTWRK is required and must be the first statement of a
network.

NTWRKLOG MSGDISK
RATE
UTBL
SIDEINFO
RN
UDIST
INCLUDE
IF
PATH1

The NTWRKLOG statement is optional.

MSGDISK RATE
UTBL
SIDEINFO
RN
UDIST
INCLUDE
IF
PATH1

The MSGDISK statement is optional.

RATE RATE
UTBL
SIDEINFO
RN
UDIST
INCLUDE
IF
PATH1

The RATE statement is required only when using rate
table delays.

UTBL UTBL
SIDEINFO
RN
UDIST
INCLUDE
IF
PATH1

The UTBL statement is optional.

SIDEINFO SIDEENT The SIDEINFO statement is optional.

Chapter 2. Understanding network hierarchies 13

Table 3. Sequence of valid network configuration statements (continued)

Statement Can be followed by Comments

SIDEENT SIDEENT
SIDEEND

At least one SIDEENT statement is required after the
SIDEINFO statement.

SIDEEND RN
UDIST
INCLUDE
IF
PATH1

The SIDEEND statement is required following the last
SIDEENT statement.

RN RN
UDIST
INCLUDE
IF
PATH1

The RN statement is optional.

UDIST UDIST
INCLUDE
IF
PATH1

The UDIST statement is optional.

INCLUDE INCLUDE
IF
PATH1

The INCLUDE statement is optional. It is primarily used
to define required but unreferenced message generation
decks.

IF IF
PATH1

The IF statement is optional.

PATH1 PATH1

DIST
UTI
FILE
APPCLU
VTAMAPPL
TCPIP

At least one PATH statement is required for all
simulation types.

DIST DIST
UTI
FILE
APPCLU
VTAMAPPL
TCPIP

The DIST statement is optional.

UTI UTI
FILE
APPCLU
VTAMAPPL
TCPIP

The UTI statement is optional.

FILE FILE APPCLU VTAMAPPL TCPIP The FILE statement is optional.

APPCLU TP The APPCLU statement is optional.

TP TP
APPCLU
VTAMAPPL
TCPIP
FE

At least one TP statement is required after an APPCLU
statement.

VTAMAPPL LU The VTAMAPPL statement is optional.

LU LU
VTAMAPPL
TCPIP
FE

At least one LU statement is required after a
VTAMAPPL statement.

14 WSim Script Guide and Reference

Table 3. Sequence of valid network configuration statements (continued)

Statement Can be followed by Comments

TCPIP DEV The TCPIP statement is optional.

DEV DEV
TCPIP
FE

At least one DEV statement is required after a TCPIP
statement.

FE FE The FE statement is optional.

Note:

1. Message deck selection order definition.

Chapter 2. Understanding network hierarchies 15

16 WSim Script Guide and Reference

Chapter 3. Defining a network configuration

This chapter describes the scripting language statements that define a network
configuration.

Summary of operands for configuration statements
The table in this section lists the operands that you can code for network
configuration statements.

For example, the STCPPORT operand is valid for both the NTWRK and the TCPIP
statements. The description for the STCPPORT operand is found under the
description of the TCPIP statement.

Note: This table does not indicate when to use an operand. Refer to the operand
description for information about its use.

Table 4. WSim network configuration operands

Operand Appears on Can also be coded on

ALTCSET LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

APLCSID LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

APPLID VTAMAPPL (VTAMAPPL simulation)
APPCLU (CPI-C simulation)

-

ASSOC DEV (TCP/IP Client simulation) TCPIP (TCP/IP Client simulation)

ATRABORT LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

ATRDECK LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

BASECSID LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

BUFSIZE APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

NTWRK

CCSIZE LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

CHAINING LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

CNOS APPCLU (CPI-C simulation) -

CNTRSEED NTWRK -

COLOR LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

© Copyright IBM Corp. 1983, 2015 17

Table 4. WSim network configuration operands (continued)

Operand Appears on Can also be coded on

CONRATE NTWRK -

CPITRACE TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

CRDATALN LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

DBCS LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

DBCSCSID LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

DELAY TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

DELYSEED NTWRK -

DISPLAY LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

DLOGMOD LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

EMTRATE NTWRK -

ENCR LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

EXIT NTWRK -

EXTFUN LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

FLDOUTLN LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

FLDVALID LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

FRSTTXT TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

FTPPORT TCPIP NTWRK

FUNCTS DEV (TCP/IP Client simulation) TCPIP (TCP/IP Client simulation)

HEAD NTWRK -

HIGHLITE LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

INEXIT NTWRK -

INFOEXIT NTWRK -

INHBTMSG NTWRK -

18 WSim Script Guide and Reference

Table 4. WSim network configuration operands (continued)

Operand Appears on Can also be coded on

INIT LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

INSTANCE TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

INXEXPND NTWRK -

ITIME NTWRK -

IUTI TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

LOCLPORT DEV (TCP/IP Client simulation) -

LOGDSPLY LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

LUTYPE LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

MAXCALL TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

MAXNOPTN LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

MAXPTNSZ LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

MAXSESS LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

MLEN APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

NTWRK

MLOG APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

NTWRK

MSGTRACE TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

NAMEHASH NTWRK -

NCTLEXIT NTWRK -

NETEXIT NTWRK -

NETUSER NTWRK -

OPTIONS NTWRK -

OUTEXIT NTWRK -

PASSWD VTAMAPPL (VTAMAPPL simulation)
APPCLU (CPI-C simulation)

-

Chapter 3. Defining a network configuration 19

Table 4. WSim network configuration operands (continued)

Operand Appears on Can also be coded on

PATH TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

PATHSEED NTWRK -

PORT DEV (TCPIP simulation) -

PROTMSG LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

PRTSPD LU (VTAMAPPL simulation)
DEV (TCP/IP simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP simulation)

PS LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

QUIESCE TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

REPORT NTWRK -

RESOURCE LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

RSTATS LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

RTR LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

SAVEAREA LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

SCAN NTWRK -

SEQ TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)
NTWRK (network definition)

APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)

SERVADDR DEV (TCP/IP Client simulation) NTWRK
TCPIP (TCP/IP Client simulation)

SIDEINFO APPCLU (CPI-C simulation) -

STCPHCLR DEV (TCP/IP Client simulation) NTWRK
TCPIP (TCP/IP Client simulation)

STCPHCLX DEV (TCP/IP Client simulation) NTWRK
TCPIP (TCP/IP Client simulation)

STCPPORT TCPIP (TCP/IP client simulation) NTWRK

STCPROLE DEV (TCP/IP Client simulation) -

STIME NTWRK -

20 WSim Script Guide and Reference

222

Table 4. WSim network configuration operands (continued)

Operand Appears on Can also be coded on

STLTRACE TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

SUDPPORT TCPIP (TCP/IP Client simulation) NTWRK

TCPNAME TCPIP (TCP/IP Client simulation) NTWRK

TEXTSEED NTWRK -

THKTIME LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

THROTTLE LU (VTAMAPPL simulation) NTWRK
VTAMAPPL (VTAMAPPL simulation)

TNPORT TCPIP NTWRK

TPNAME TP (CPI-C simulation) -

TPREPEAT TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

TPSTATS TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

TPSTIME TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

TPTYPE TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

TYPE DEV (TCPIP simulation) NTWRK (Terminal simulation)
TCPIP (TCPIP simulation)

UASIZE LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

UCD TP (CPI-C simulation) NTWRK
APPCLU (CPI-C simulation)

UCMDEXIT NTWRK -

UOM LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

USERAREA TP (CPI-C simulation)
LU (VTAMAPPL simulation)
DEV (TCP/IP Client simulation)

NTWRK
APPCLU (CPI-C simulation)
VTAMAPPL (VTAMAPPL simulation)
TCPIP (TCP/IP Client simulation)

UTBLSEED NTWRK -

UTI NTWRK -

UXOCEXIT NTWRK -

Chapter 3. Defining a network configuration 21

22 WSim Script Guide and Reference

Chapter 4. Defining general simulation statements

This chapter describes the general network configuration definition statements.
These statements are listed in alphabetical order. For more information about the
order in which you should place the statements in a network configuration deck,
refer to Table 3 on page 13.

When coding the configuration definition statement for a network, you can code
the common operands for the network resources at the highest level statements
and override them on lower level statements, if necessary.

Operands on the NTWRK statement are grouped according to function and appear
under group headings. The inclusion of an operand within a group indicates that
you should use that operand only when defining resources that belong to that
group.

Note: You can select operands from more than one functional group to define a
particular resource. For example, operands from the SNA SIMULATION
OPERANDS and 3270 SIMULATION OPERANDS groups can appear on a single
LU statement.

DIST - PATH distribution statement

name DIST weight[,...]

Function

The DIST statement defines a probability distribution to be used when choosing
entries from a PATH statement. The name field must match the name field of the
PATH statement with which the DIST statement is associated. This statement is
optional.

Where

name
Function: Specifies the name to be used to identify this distribution.

Note: This field is used to locate the PATH statement with which this
distribution corresponds.

Format: From one to eight alphanumeric characters.

Default: None. This field is required.

weight[,...]
Function: The number specified assigns a relative weight to the corresponding
path entry. Each weight represents a fractional value of the total weights
specified on this DIST statement. This fractional value is determined by
dividing the weight specified by the total of all the weights. The probability
that a particular path entry will be chosen for message generation on any
given selection is this fractional value. For example:

© Copyright IBM Corp. 1983, 2015 23

1 PATH A,B,C
1 DIST 50,30,20

WSim adds all the weights (50 + 30 + 20 = 100), generates a random number
between 1 and the sum (100), and chooses a deck that corresponds to that
number. Here, 1 through 50 represents deck A, 51 through 80 represents deck
B, and 81 through 100 represents deck C. If WSim generates the number 72, it
would choose deck B.

Format: A series of integers from 0 to 65535 separated by commas.

Note: The number of weights entered must be the same as the number of
entries on the corresponding PATH statement. The sum of the weights must be
greater than zero and must not exceed 65535.

Default: None. At least one weight must be entered.

FE - future event statement

[name] FE COMMAND=(command)
{,EVENT=event}
{,TIME=ssssssss}

Function

The FE statement defines an operator command to be executed at a specified time
after the network simulation has begun or when a specified EVENT is signaled.
This statement is optional.

Where

name
Function: Specifies the name to be used for this statement (for user
information only).

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

COMMAND=(command)
Function: Specifies the operator command to be executed.

Format: The command is a character string similar to the data entered with an
OPCMND statement (see “OPCMND - operator command statement” on page
173), except that data field options are not allowed.

Default: None. This operand is required.

EVENT=event
Function: Specifies the name of an event which, when signaled, will cause the
command specified by this statement to be processed.

FE statements associated with EVENTs will still be active after the network is
stopped in case you want to signal the EVENT name and cause the FE to be
executed.

Format: A 1- to 8-character name.

Default: None.

24 WSim Script Guide and Reference

TIME=ssssssss
Function: Specifies the time into the run that the operator command is to be
processed.

FE statements with the TIME operand will be dequeued and not executed if
the network is stopped before the time is reached.

Format: The value of ssssssss is from one to eight digits specifying the number
of seconds. The range for ssssssss is from 1 to 21474836.

Default: None.

Note: The EVENT and TIME operands cannot appear on the same FE statement.
Code either the EVENT or the TIME operand, but not both.

A future event will only be executed once. When the time expires or the event is
signaled, the event will not be executed again unless the network is stopped and
restarted.

FILE - FTP FILE definition statement

name FILE [DATA=utblname]
[,NUMREC=integer]
[,TYPE={E|A}]
[,RECFM={V|F}]
[,RECLEN=integer]
[,MINLEN=integer]

Function

The FILE statement is used in a network definition to define the data to be sent for
a simulated file being transferred from WSim via the FTP protocol. This statement
is optional.

Where

name
Function: Provides a name to use to reference this FILE statement on PUT or
APPEND statements in the script. name must be unique among the FILE
statements within the network definition.

Format: From one to eight alphameric characters.

Default: None. This field is required.

DATA=utblname
Function: Identifies a user table (UTBL or MSGUTBL) from which the data for
this file is obtained. Each entry in the user table represents a record in the file.
Either DATA or NUMREC must be specified. Both may be specified. See
further discussion under NUMREC.

Format: A one- to three-digit number identifying a UTBL statement in the
current network definition or a one- to eight-character name identifying an
MSGUTBL member.

Default: None. This operand is optional.

NUMREC=integer
Function: Identifies the number of records to be sent as part of this file

Chapter 4. Defining general simulation statements 25

transfer. If DATA is also coded, the number of records specified is obtained
from the user table named by that operand. Entries in the user table are
transmitted in order until the specified number has been sent. If NUMREC is
greater than the number of entries in the table, WSim will cycle through the
user table until the number of records specified has been transmitted. This
allows for extensive pattern data as well as real file data to be represented in
the user tables.

If DATA is not specified, WSim will automatically generate records that contain
repeated strings of the alphabetic and numeric characters.

Format: A decimal number from 1 to 2147483647.

Default: Number of entries in the user table if DATA is also specified. None if
DATA is not specified. Either DATA or NUMREC must be coded.

TYPE={E|A}
Function: Specifies the type of data contained in the file represented by this
FILE statement. Transfer type is the code used in transferring the data
represented by the FILE statement to a server and is controlled by FTP
commands issued from your script. TYPE specifies whether the data referenced
by this FILE statement should be treated as EBCDIC (E) or ASCII (A) data.
This specification is used to determine whether WSim should translate the file
data prior to transmission.

For the TYPE operand, you can specify the following values:

A indicates that the DATA specified for this FILE statement should be
treated as ASCII data.

E indicates that the DATA specified for this FILE statement should be
treated as EBCDIC data.

If the transfer type and file type agree, or if the transfer type is IMAGE, WSim
does not perform any translation. This operand is only meaningful if DATA is
also specified.

Format: E or A as shown.

Default: E

RECFM={V|F}
Function: Specifies whether the records in this simulated file are to be
considered Variable (V) or Fixed (F) length records.

For the RECFM operand, you can specify one of the following values:

V Specifies records as variable length. If DATA is also specified, the
length of each user table entry will determine the individual record
lengths up to the length specified by the RECLEN operand, if any, or
65535. If DATA is not specified, the records will have random lengths
between the RECLEN and MINLEN specifications (see below).

F Specifies records as fixed length. If DATA is also specified, each entry
from the user table named by the DATA operand will be truncated or
padded with blank characters, as necessary, to the length specified by
the RECLEN operand. If DATA is not specified, the automatically
generated records will each have the length specified by the RECLEN
operand.

Format: V or F as shown.

Default: V

26 WSim Script Guide and Reference

RECLEN=integer
Function: Specifies the length (or maximum length) of each record that is a
part of this FILE. If RECFM=F is specified, each record is padded or truncated
to this length. If RECFM=V is specified, each record is limited to a maximum
of this length.

Format: A decimal number from 1 to 65535.

Default: None. This operand is required if RECFM=F or if DATA is not
specified. It is optional if RECFM=V and DATA are specified.

MINLEN=integer
Function: Specifies the minimum length record to generate when RECFM=V
and DATA is not specified. Not allowed if RECFM=F or if DATA is specified.

Format: A decimal number from 1 to the value specified by RECLEN.

Default: When applicable, the value specified by RECLEN.

IF - network-level logic test statement

[name] IF {CURSOR=(row,col)}
{EVENT=event}
{LOC=location}
{LOCTEXT={cntr|(data)|integer}}
[,AREA=area]
[,COND={EQ|GE|GT|LE|LT|NE}]
[,DATASAVE=(area,loc,leng)]
[,DELAY=CANCEL]
[,ELSE=action]
[,LENG=value]
[,LOCLENG=value]
[,LOG=(data)]
[,RESP=NO]
[,SCAN={YES|value}]
[,SCANCNTR=cntr]
[,SNASCOPE={ALL|LOC|REQ|RSP}]
[,TEXT={RESP|cntr|(data)|’xx’|integer}]
[,THEN=action]
[,TYPE=type]
[,UTBL=name]
[,UTBLCNTR=cntr]
[,WHEN={IN|OUT}]

Function

The network level IF statements specify comparisons to be made on data sent or
received by WSim or on terminal or device counter values, switch settings, cursor
positions, or data areas. This statement performs the following functions:
v Test for event completion
v Set switches
v Override normal SNA responses
v Cancel current delays
v Save and log data
v Alter message generation paths based on comparison results.

Chapter 4. Defining general simulation statements 27

The network level IF statement is optional, but you can code it up to 256 times. If
used, the IF statement is active during the entire network simulation. The IF
statements are evaluated in the order specified prior to any of the active message
generation level IF statements.

Notes:

v Network-level IF statements are not evaluated for CPI-C simulations. If they are
specified, WSim ignores them when simulating CPI-C transaction programs. For
combined networks, they are evaluated for all resources except CPI-C
transaction programs.

v See Chapter 14, “Conditions logic test not evaluated,” on page 217 for more
information on conditions under which a logic test is not evaluated.

Where

name
Function: Specifies the name to be used for this statement.

Format: From one to eight characters.

Default: None. This field is optional.

Note: The first three characters of this name, if coded, appear in INFO
messages on loglists.

CURSOR=(row,col)
Function: Specifies the cursor position to be compared with the current cursor
position. It references the usable area screen as the operator would see it.

Note: The logic test will not be evaluated if the device is not a display device.

Format: Two values, each of which can be either an integer between 1 and 255
or a counter specification whose value is within this range specifying the row
and column positions, respectively.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: If you code the CURSOR operand, do not code the AREA, COND,
EVENT, LENG, LOC, LOCLENG, LOCTEXT, SCAN, SCANCNTR, TEXT,
UTBL, and UTBLCNTR operands.

EVENT=event
Function: Specifies the name of a wait or post event which is to be tested.

Format: For the EVENT operand, you can code one of the following options:

name Specifies the name of the event to be tested for completion, where name is
one to eight alphanumeric characters.

N±value Specifies the event name to be referenced at an offset from the start of the
network user area (+value) or back from the end of the network user area
(-value).

U±value Specifies the event name to be referenced at an offset from the start of the
device user area (+value) or back from the end of the device user area
(-value).

Ns+value Specifies an event name to be referenced at an offset from the start of the
network save area.

s+value Specifies an event name to be referenced at an offset from the start of the
device save area.

28 WSim Script Guide and Reference

Where:

value Can be any integer from 0 to 32766 or a counter specification whose
value is within this range. Zero is the offset to the first byte of the field
for positive offsets (+value) and the offset to the last byte of the field
for negative offsets (-value).

s Is a savearea number from 1 to 4095.

name Can be from one to eight alphanumeric characters or a user area or
save area.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: If you code the EVENT operand, do not code the AREA, COND,
CURSOR, LENG, LOC, LOCLENG, LOCTEXT, SCAN, SCANCNTR, TEXT,
UTBL, and UTBLCNTR operands.

LOC=location
Function: Specifies the starting location of the data that is to be compared.

Note: If you code the LOC operand, do not code the EVENT, CURSOR, or
LOCTEXT operands.

Format: For the LOC operand, you can code one of the following options:

B±value Ns+value TSWn|TSWm|... TSEQ
C±value s+value SWn DSEQ
D+value (row,col) SWn&SWm&.. NCn
TH+value NSWn SWn|SWm|... LCn
RH+value NSWn&NSWm&.. NSWn&TSWm&SWn&.. TCn
RU+value NSWn|NSWm|... NSWn|TSWm|SWn|... DCn
N±value TSWn NSEQ
U±value TSWn&TSWm&.. LSEQ

value can be an integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

Option Description

B±value For +value, begin testing an offset from the start of data in the device
buffer. (For display devices, the device buffer is the screen image buffer.)
For non-display devices and -value, begin testing at an offset back from
the end of the data in the device buffer. For display devices and -value,
begin testing at an offset back from the end of the screen image buffer.

C±value Begin testing at an offset from the cursor for +value, or at an offset back
from the cursor for -value. Normally, use this location only with display
devices.

D+value Begin testing at an offset from the start of the incoming or outgoing data
stream. This includes the transmission header and the request header.

TH+value Begin testing at an offset from the start of the transmission header.

RH+value Begin testing at an offset from the start of the request header, if present.

RU+value Begin testing at an offset from the start of the request unit.

N±value Begin testing at an offset from the start (+value) or back from the end
(-value) of the network user area defined by the NETUSER operand.

Chapter 4. Defining general simulation statements 29

U±value Begin testing at an offset from the start (+value) or back from the end
(-value) of the device user area defined by the USERAREA operand.

Ns+value Begin testing at an offset from the start of the network save area
specified by s, where s is an integer from 1 to 4095.

s+value Begin testing at an offset from the start of the device save area specified
by s, where s is an integer from 1 to 4095.

(row,col) Indicates that the test is to be made at the specified row and column of
the screen image of a display device, where row and col may each be an
integer from 1 to 255 or a counter specification whose value is within
this range. If specified for a non-display device type, the test will not be
evaluated.

You can use any available counter or switch for a comparison. You can test up
to 4095 switches where n and m represent switch numbers and can be from 1
to 4095.

Note: You can also specify a combination of network, terminal and device
level switches (for example, TSW5│SW3│NSW7│NSW28). However, you cannot
mix the & and │ operators in the same LOC operand specification. Also, when
one of the counter operands is coded, the corresponding value of the TEXT
operand must be specified as numeric data or another counter.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Notes:

v If, when a logic test is to be evaluated, the specified data location is not
valid (for example, the location is outside the buffer or user area or not
within the data transferred), the logic test is not evaluated and no action is
taken unless the operand LOCLENG is coded.

v When multiple partitions are defined for a 3270 device, buffer or cursor
offsets (B+, B-, C+, C-) will reference the data in the presentation space of
the currently active partition. The combination (row,col) value will reference
the display as you would see it, which could include data from more than
one partition. The logic test will be performed against the presentation space
data of the partition that owns the area of the display referenced by the
(row,col) specification.

v For VTAMAPPL LUs, TSW, TSEQ, LSEQ, TCn, and LCn will reference a
single set of switches and counters allocated to each VTAMAPPL.

v See Chapter 10, “Data locations,” on page 209 for device-specific information
concerning this operand. See Chapter 12, “Counters and switches,” on page
213 for valid counter and switch specifications.

LOCTEXT={cntr|(data)|integer}
Function: Specifies the value that is to be used in the comparison.

Note: If you code the LOCTEXT operand, do not code the AREA, CURSOR,
EVENT, LENG, LOC, or LOCLENG operands.

Format: For the LOCTEXT operand, you can enter one of the following values:

cntr The counter to be used in the comparison. The valid values for cntr are
NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn, and DCn, where n is an
integer from 1 to 4095. These counters are explained under the LOC

30 WSim Script Guide and Reference

operand on this statement. The LOCTEXT operand can specify a
counter value only if the TEXT operand specifies a counter or integer
value.

(data) The data coded within the text delimiter specified on the MSGTXT
statement is to be used as the comparison data. The data field options
can be used to specify the data (see Chapter 9, “Data field options,” on
page 199).

When comparing for specified data, enter hexadecimal data within the
text delimiters by enclosing the digits within single quotes. Two digits
compose one hexadecimal character. For example, LOCTEXT=(ABC)
will generate a comparison for the three characters ABC.
LOCTEXT=('AB'CD) is a comparison for three bytes including one
hexadecimal character of AB and two EBCDIC characters of CD. A
maximum of 32767 characters will be used for comparison.

To enter a single quote, text delimiter (TXTDLM), or data field option
control character (CONCHAR) as data, enter two of the characters. You
can also continue the data on the next statement.

integer A 1- to 10-digit integer ranging from 0 to 2147483647 is to be used for
the comparison. This format is valid when the TEXT operand specifies
a counter or integer value.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: When LOCTEXT is coded, the THEN or ELSE action on an IF statement
is always executed as long as the IF meets the criteria set by the SNASCOPE,
TYPE, and WHEN operands. The string data comparison allows for unequal or
null strings, with the shorter string being padded with blanks, unless SCAN is
also coded. In this case, the LOCTEXT data is scanned and substrings within it
equal to the length of the TEXT data are compared to the TEXT data.

AREA={area}
Function: Specifies a user area or save area location that contains the text value
for which the comparison is to be made.

Format: For the AREA operand, you can code one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value). For save area references, s can be an integer from 1 to 4095.

N±value The text is contained in the network user area where value is the offset
from the beginning of the network user area to the text or from the end
of the network user area back to the text.

U±value The text is contained in the device user area where value is the offset
from the beginning of the device user area to the text or from the end
of the device user area back to the text.

Ns+value The text is contained in a network save area, where s is the number of
the network save area and value is the offset from the beginning of the
network save area to the text.

s+value The text is contained in a device save area, where s is the number of the
device save area and value is the offset from the beginning of the device
save area to the text.

Chapter 4. Defining general simulation statements 31

Default: None. The AREA, TEXT, or UTBL operand is required, except when
you specify the LOC operand for switch testing or specify the EVENT operand.
If you code the AREA operand, the LENG operand may also be coded. This
operand cannot be coded if the LOC operand specifies a sequence or index
counter, or if the TEXT or LOCTEXT operand is coded.

COND={EQ|GE|GT|LE|LT|NE}
Function: Specifies the condition for which the comparison is to be made. The
data field identified by the LOC or LOCTEXT operand is compared to the data
specified in the TEXT or AREA operands, and the condition is set. If the
condition specified by the COND operand is met, the THEN action is taken. If
the condition specified by the COND operand is not met, the ELSE action is
taken.

Note: This option is not valid for a logic test that tests switches, performs a
test under mask, tests an event, or tests a cursor position.

Format: For the COND operand, you can code one of the following options:

EQ The two fields are equal.

GE The LOC data is greater than or equal to the TEXT or AREA data or
the LOCTEXT data is greater than or equal to the TEXT data.

GT The LOC data is greater than the TEXT or AREA data or the LOCTEXT
data is greater than the TEXT data.

LE The LOC data is less than or equal to the TEXT or AREA data or the
LOCTEXT data is less than or equal to the TEXT data.

LT The LOC data is less than the TEXT or AREA data or the LOCTEXT
data is less than the TEXT data.

NE The two fields are not equal.

Default: EQ

DATASAVE=(area,loc,leng)
Function: Specifies data to be saved in a save area when the logic test is made,
and the THEN action is taken. Each time data is saved in a save area, the
length of that data is also saved to be used when the data is recalled.

If the data to be saved is longer than the save area, the data will be truncated.
If the data is shorter than what is specified by the leng parameter, only the
available data will be saved. If the specified save area is not defined in the
network definition, no data will be saved, and an informational message will
be written to the log data set.

Note: This operand is valid only if the THEN operand is coded on the same IF
statement.

Format: For the DATASAVE operand, code the following three values (enclosed
in parentheses and separated by commas):

area Specifies which of the save areas is to be used for data retention, where
area is either a device save area s, or a network save area Ns, where s is
an integer from 1 to 4095.

loc Specifies the location of the data to be saved. You can enter B+value,
C+value, D+value, TH+value, RH+value, or RU+value, where value can be
an integer from 0 to 32766 or a counter specification whose value is
within this range. B, C, D, TH, RH, and RU are the same as previously
defined under the LOC operand.

32 WSim Script Guide and Reference

leng Specifies the amount of data to be saved in bytes, where leng is an
integer from 1 to 32767 or a counter specification whose value is within
this range.

Default: None. This operand is optional.

DELAY=CANCEL
Function: Specifies that the current active delay is to be canceled.

Note: This operand is valid only if a THEN operand is also specified on the
same IF statement. The delay is canceled only when the THEN action specified
on the IF statement is taken.

Format: CANCEL

Default: None. This operand is optional.

ELSE=action
Function: Specifies the action to be taken if the specified condition was not
met, the tested switches were off, or the tested event was not complete.

Note: If the ELSE operand is omitted and the condition is not met, no action is
taken (all indicators and message generation paths are left as they were before
the IF statement was encountered).

Format: You can code one of the following options:

Bname-label CONT NSW(ON) SW(ON)
Bname WAIT NSW(OFF) SW(OFF)
B-label DLYCNCL NSWn(ON) SWn(ON)
Cname-label QUIESCE NSWn(OFF) SWn(OFF)
Cname RELEASE
C-label TSW(ON) WAIT(event)
Ename-label RETURN TSW(OFF) POST(event)
Ename IGNORE TSWn(ON) RESET(event)
E-label ABORT TSWn(OFF) SIGNAL(event)

QSIGNAL(event)
VERIFY[-(data)]

Note: For a description of these actions, see the THEN operand.

Default: None. You must code either the THEN or ELSE operand.

LENG=value
Function: Specifies the length of the text in the user area or save area specified
by the AREA operand.

Format: value can be an integer from 1 to 32767 or a counter specification
whose value is within this range.

Default: The amount of data remaining in the area starting from the offset
specification. This operand is not allowed if you code the LOCTEXT or TEXT
operand.

LOCLENG=value
Function: Specifies a length to be associated with the LOC operand data.

Note: When LOCLENG is coded, the THEN or ELSE action on an IF statement
is always executed as long as the IF meets the criteria set by the SNASCOPE,
TYPE, and WHEN operands. The string data comparison allows for unequal or
null strings with the shorter string being padded with blanks. The LOCLENG

Chapter 4. Defining general simulation statements 33

operand cannot be coded with the CURSOR, EVENT, LOCTEXT, SCAN, or
SCANCNTR operands or used with a test under mask condition.

Format: For the LOCLENG operand, you can code one of the following values:

* Specifies that the length of the LOC operand data is all the data
available in the specified area.

integer Specifies that the length of the LOC operand data is the integer value
(1-32767) specified.

cntr Specifies that the length of the LOC data is the counter specification
value (0-32767) specified.

Default: None.

LOG=(data)
Function: Specifies the data to be written in a LOG record to the log data set
when the test is made.

Note: This operand is valid only if a THEN operand is specified.

Format: 1 to 50 bytes of EBCDIC data enclosed within the parentheses. To
enter a single quote or a parenthesis as data, enter two of the characters. You
cannot continue the data to another statement. Also, you cannot code data field
options for this operand.

Default: None.

RESP=NO
Function: Specifies that if the THEN action is taken for this IF statement,
WSim will not generate an automatic SNA response for this message. Instead,
WSim will set up the TH and RH for the normal response and go to message
generation to get the response data from the message generation deck. The
largest response that can be built is 256 bytes long. A response will always be
sent after returning from message generation.

Note: This operand is valid only if a THEN operand is also specified on the
same IF statement.

Format: NO

Default: None. This operand is optional. If not coded, WSim automatically
builds the SNA response.

Note: This operand is ignored for non-SNA terminals. However, the THEN
action will be performed for all terminal types. Therefore, code this operand
only on logic tests evaluated for SNA terminals and devices.

SCAN={YES|value}
Function: Specifies whether the data is to be scanned sequentially for the data
specified in the AREA, TEXT, or UTBL operand. When scanning is specified,
the data is searched starting at the location specified in the LOC operand or at
the beginning of the text specified by the LOCTEXT operand. The data is
scanned and compared with the character string as specified by the AREA or
TEXT operand for LOC or the TEXT operand for LOCTEXT. If data that meets
the comparison condition is found before the specified number of positions
have been scanned, the THEN action is taken. Otherwise, the ELSE action is
taken.

Note: Due to possible performance degradation, use this option with care.

34 WSim Script Guide and Reference

Format: For the SCAN operand, you can code one of the following values:

YES Specifies that scanning continues until the condition is met or the end
of the data is reached.

value Specifies that scanning continues until the condition is met, the number
of positions specified by value has been scanned, or the end of data is
reached. value can be any integer from 1 to 32767 or a counter
specification whose value is within this range.

Default: None. If this operand is omitted, no scanning is performed. The
LOCLENG operand cannot be coded with the SCAN operand.

SCANCNTR=cntr
Function: Specifies a counter to be set to the offset of text data that caused the
logic test condition to be met. If text is being compared and the IF condition is
met, the specified counter is assigned the value of the offset into the save area,
user area, buffer, or data stream which satisfies the condition if the LOC
operand was coded or the value of the offset into the LOCTEXT data if the
LOCTEXT operand was coded. If the IF condition was not met, the value of
the counter is unchanged.

Note: If you code this operand, do not code the CURSOR, EVENT, or
LOCLENG operands. Also, do not code the SCANCNTR operand if the LOC
operand specifies a switch or counter to be tested or the LOCTEXT operand
specifies an integer or counter to be tested. If SCANCNTR and UTBLCNTR are
both coded and the same counter is specified on both operands, the
SCANCNTR operand will take precedence if a match is found.

Format: The value coded for cntr can be any of the counter specifications as
defined by the TEXT operand.

Default: None. This operand is optional.

SNASCOPE={ALL|LOC|REQ|RSP}
Function: Specifies which SNA flows to test for the data specified in the
AREA, TEXT, or UTBL operand.

Format: For the SNASCOPE operand, you can enter one of the following
values:

ALL Specifies that logic testing is to performed on both SNA request and
response flows.

LOC Specifies that logic testing is to be performed based on the LOC or
LOCTEXT operand specification. See Chapter 10, “Data locations,” on
page 209 for more information.

REQ Specifies that logic testing is to be performed on the SNA request flows
only.

RSP Specifies that logic testing is to be performed on the SNA response
flows only.

Default: LOC

Note: This operand is ignored for non-SNA devices.

TEXT={RESP|cntr|(data)|'xx'|integer}
Function: Specifies the text value for which the test is to be made.

Format: For the TEXT operand, you can code one of the following options:

RESP The data to be used in the comparison was specified using the RESP

Chapter 4. Defining general simulation statements 35

operand on the previous TEXT statement. If no RESP was coded on the
previous TEXT statement, a null value is used for the logic test.

cntr The value of a counter is to be used in the comparison. The valid
values for cntr are NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn, and
DCn, where n is an integer from 1 to 4095. These values are explained
under the LOC operand on this statement. The TEXT operand can
specify a counter value only if the LOC operand specifies a counter
value or the LOCTEXT operand specifies a counter or integer value.

(data) The data coded within the parentheses is to be used as the comparison
data. When comparing with specified data, you can enter hexadecimal
data within the parentheses by enclosing the digits within single
quotes.

Two digits compose one hexadecimal character. For example,
TEXT=(ABC) will generate a comparison for the three characters ABC.
TEXT=('AB'CD) is a comparison for three bytes including one
hexadecimal character of AB and two EBCDIC characters of CD. A
maximum of 32767 characters will be used for comparison. To enter a
single quote, parenthesis, or dollar sign ($) as data, enter two of the
characters. You can also continue the data on the next statement.

For information on the data field options that you can use, see
Chapter 9, “Data field options,” on page 199.

'xx' A test under mask on a byte of the data is executed using the mask
specified by two hexadecimal digits within single quotes. The bits of
the mask correspond one for one with the bits of the byte of data. A
mask indicates that the corresponding bits in the byte of data are
tested. If all bits tested are set to one, the THEN action is taken.
Otherwise, the ELSE action is taken.

integer A 1- to 10-digit integer ranging from 0 to 2147483647 is to be used in
the comparison. This format is valid when the LOC operand specifies a
counter or the LOCTEXT operand specifies a counter or integer value.
The value will be compared to this text numeric value.

Default: None. Either the TEXT, UTBL, or AREA operand is required for all
tests, except when you code the LOC operand for switch testing or code the
EVENT operand. You cannot code the TEXT operand if the LOC operand
specifies switch testing, or you code the AREA or LENG operand.

THEN=action
Function: Specifies the action to be taken if the specified condition was met,
the switches tested were on, or the tested event was complete.

Note: When the THEN operand is omitted and the test condition is met, no
action is taken (all indicators and message generation paths are left as they
were before the IF statement was encountered).

Format: For the THEN operand, you can code one of the following options:

Bname-label CONT NSW(ON) SW(ON)
Bname WAIT NSW(OFF) SW(OFF)

DLYCNCL NSWn(ON) SWn(ON)
Cname-label QUIESCE NSWn(OFF) SWn(OFF)
Cname RELEASE

TSW(ON) WAIT(event)
Ename-label RETURN TSW(OFF) POST(event)

36 WSim Script Guide and Reference

Ename IGNORE TSWn(ON) RESET(event)
ABORT TSWn(OFF) SIGNAL(event)

QSIGNAL(event)
VERIFY[-(data)]

The following list describes each of the options.

Option Description

ABORT Causes the current message generation deck to be stopped, any active
logic tests to be deactivated, and the next message generation deck to be
selected according to normal PATH selection rules.

B Indicates a branch to another location within the message generation
decks and resets the WAIT indicator. name specifies the name of the
message generation deck that is the branch target. name-label specifies a
label in the named message generation deck.

C Indicates a call to another location within the message generation decks
and resets the WAIT indicator. name specifies the name of the message
generation deck that is the call target. name-label specifies a label in the
named message generation deck.

Call differs from branch in that a return pointer is saved to allow
message generation to return to the point of the call.

CONT Specifies that message generation is to continue in the current message
generation deck.

DLYCNCL Cancels any active or pending intermessage delay.

E Specifies an immediate execution of the statements beginning at the
specified message generation deck location. name specifies the name of
the message generation deck that is the execute target. name-label specifies
a label in the named message generation deck.

The statement types that can be executed with this action are BRANCH,
CALC, CANCEL, DATASAVE, DEACT, EVENT, IF (other than
WHEN=IMMED), LABEL, LOG, MONITOR, MSGTXT, ON, OPCMND,
SET, SETSW, SETUTI, WTO, and WTOABRHD. Execution stops when
any other statement type is encountered. This action is separate from,
and does not affect, the normal message generation flow and does not
reset the WAIT indicator. It takes place before the evaluation of any
subsequent IF statements. It does not affect subsequent actions, and can
itself be taken, regardless of whether or not any other action has already
been taken.

IGNORE Specifies that no action is to take place. In addition, no other actions of
the same class (such as CONT, RETURN, and WAIT) will take place for
the message being tested, even if a subsequent logic test condition is met.

NSW(ON) Sets all network switches on up to the maximum number referenced.

NSW(OFF) Clears all network switches up to the maximum number referenced.

NSWn(ON) Sets on the indicated network switch, where n is an integer from 1 to
4095.

NSWn(OFF) Clears the indicated network switch, where n is an integer from 1 to
4095.

POST(event) Specifies that the named event is to be posted.

QSIGNAL(event) Specifies that the named event is to be signaled, but only for the device
which issued the QSIGNAL.

Chapter 4. Defining general simulation statements 37

Option Description

QUIESCE Prohibits message generation until a release operation is performed. A
quiesced device can receive messages and respond negatively to polls
while not generating any data messages.

RELEASE Specifies that a quiesced device is to proceed in message generation.

RESET(event) Specifies that the named event is no longer to be considered posted.

RETURN Specifies a return to message generation after the point of the last call. If
no CALL statements have been issued, a message trace (MTRC) record is
written to the log data set, and the action is ignored.

SIGNAL(event) Specifies that the named event is to be signaled.

SW(ON) Sets all device switches on up to the maximum number referenced.

SW(OFF) Clears all device switches up to the maximum number referenced.

SWn(ON) Sets on the indicated switch for the device, where n is an integer from 1
to 4095.

SWn(OFF) Clears the indicated switch for the device, where n is an integer from 1 to
4095.

TSW(ON) Sets all terminal switches on up to the maximum number referenced.

TSW(OFF) Clears all terminal switches up to the maximum number referenced.

TSWn(ON) Sets on the indicated switch for the terminal, where n is an integer from
1 to 4095.

TSWn(OFF) Clears the indicated switch for the terminal, where n is an integer from 1
to 4095.

VERIFY[-(data)] Causes a VRFY log record to be logged to the log data set for this
network. If data is coded, it will be included in the VRFY log record. The
value for data can be one or more characters enclosed within parentheses.
Although data may be longer than 50 characters, no more than 50
characters will be included in the VRFY record. To enter a single quote or
parenthesis as data, enter two of the characters. You can continue the
data and include any data field options.

The Loglist Utility (refer to , SC31-8947) can format these VRFY log
records into Verification Reports.

WAIT Prohibits message generation.

Default: None. You must code either the THEN or ELSE operand.

Notes:

v When the THEN operand is omitted, the DATASAVE, DELAY, LOG, and
RESP operands are not allowed on the IF statement.

v When a BRANCH, CALL, RETURN, QUIESCE, RELEASE, or CONT action
is taken, the WAIT condition is reset to OFF.

v Resetting the WAIT condition with a CONT, BRANCH, CALL, QUIESCE, or
RELEASE action does not reset the event wait condition.

v See , SC31-8945 for more information on actions executed when multiple IF
statements are coded.

v The event name specified in WAIT(event), POST(event), SIGNAL(event),
QSIGNAL(event), and RESET(event) can either be explicitly coded as a name
(up to eight alphanumeric characters), or it can reference a save area or user
area for the name. These are specified as:
– N±value

38 WSim Script Guide and Reference

– Ns+value

– U±value

– s+value

Reference the EVENT statement or EVENT operand for more information on
these operand values.

TYPE=type
Function: Specifies the type of terminal for which this IF statement is to be
evaluated.

Note: Chapter 11, “Terminal, device, and logical unit types,” on page 211
contains definitions of the terminal and device types.

Format: For the TYPE operand, you can code one of the following terminal
types:

LU0 LU1 LU2 LU3 LU4
LU6 LU62 FTP LU7 TN3270
STCP SUDP TNNVT TN3270E TN3270P
TN5250

UTBL=name
Function: Specifies the number of the user table, as defined by a UTBL
statement or name coded on the MSGUTBL statement, containing the entries to
be compared with the data defined by the LOC or LOCTEXT operand.

Format: An integer from 0 to 255 or from one to eight alphanumeric characters
with the first character being alphabetic.

Default: None. This operand is optional.

Note: If you code the UTBL operand, do not code the AREA, LENG, EVENT,
and TEXT operands. Also, you cannot code the UTBL operand if the LOC
operand specifies a switch or counter to be tested or the LOCTEXT operand
specifies a counter or integer value to be tested.

UTBLCNTR=cntr
Function: Specifies a counter to be set to the index of the user table entry that
caused the logic test condition to be met. If the logic test condition was not
met, the value of the counter is unchanged.

Note: If you code the UTBLCNTR operand, do not code the AREA, EVENT,
LENG, and TEXT operands. Also, you cannot code the UTBLCNTR operand if
the LOC operand specifies a switch or counter to be tested or the LOCTEXT
operand specifies a counter or integer value to be tested. If SCANCNTR and
UTBLCNTR are both coded and the same counter is specified on both
operands, the SCANCNTR operand will take precedence if a match is found.

Format: The value of cntr can be any of the counter specifications as defined
by the TEXT operand.

Default: None. This operand is optional.

Note: The index of the first entry in a user table is zero.

WHEN={IN|OUT}
Function: Specifies when the logic test is to be evaluated.

Format: For the WHEN operand, you can code one of the following values:

Chapter 4. Defining general simulation statements 39

IN Specifies that the logic test will be evaluated when WSim receives the
data.

OUT Specifies that the logic test will be evaluated when WSim transmits the
data.

Default: IN

INCLUDE - message text definition statement

[name] INCLUDE deck[,...]

Function

The INCLUDE statement specifies message generation decks that are to be used by
the network during the simulation run. You can code the INCLUDE statement
multiple times. This statement is optional.

Note: The INCLUDE statement is only required for the purpose of naming
message generation decks not referenced elsewhere in the network definition. For
example, a message generation deck that is not initially used, but needs to be
available for use in an A (Alter) operator command, must be named with an
INCLUDE statement.

Where

name
Function: Specifies the symbolic name of this statement (for user information
only).

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

deck[,...]
Function: Specifies the name of a message generation deck to be included for
message generation.

Format: A 1- to 8-character name that conforms to standard JCL naming
conventions.

Default: None. You must specify at least one message generation deck.

Note: You can code all of the referenced message generation decks on a single
INCLUDE statement or divide them between multiple statements.

MSGDISK - control block paging data set definition statement

[name] MSGDISK {DDNAME=ddname}
{SPACE=blocks[,UNIT={unit|SYSDA}]}
[,WORKSET=worknum]

40 WSim Script Guide and Reference

Function

The MSGDISK statement defines the work data set for the paging of control blocks
representing message generation decks, User Tables, and IF statements. It also
specifies the amount of virtual storage to be used as a working set for this paging.
The MSGDISK statement is optional.

Where

name
Function: Specifies the symbolic name for this statement (for user information
only).

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

DDNAME=ddname
Function: Specifies the name on a DD statement included in the execution JCL,
which defines the work data set for the paging of control block data.

Format: A 1- to 8-character name that conforms to standard JCL DD statement
naming conventions. The value of ddname should be unique for each
concurrently initialized network.

Default: None. You must code either the DDNAME operand or the SPACE
operand.

Note: For OS/VS, the DD statement named by ddname should have the
following format:
//ddname DD SPACE=(4096,blocks),UNIT=unit

where:

blocks Specifies the number of 4096-byte blocks for which space is to be
allocated. It can be an integer from 1 to 16777215. The number of
blocks required can be obtained from message ITP659I, which was
produced by an earlier preprocessor run for the network.

unit Specifies the unit name to be used in allocating the work data set.

SPACE=blocks[,UNIT={unit|SYSDA}]
Function: Specifies the amount of space to be allocated for the work data set,
and optionally specifies the unit to be used in allocating the work data set.

Format: The values for blocks and unit are the same as described for the
DDNAME operand.

Default: None. You must code either the DDNAME operand or the SPACE
operand.

Note: If you code the SPACE operand, the work data set will be dynamically
allocated, and the UNIT operand is optional with a default value of SYSDA.

The SPACE and UNIT operands are valid only for an OS/VS2 MVS system.
However, the preprocessor will not flag them as errors if it is executing on any
other system. WSim will flag them as errors if the network is initialized on
another system.

Note: You must code the SPACE operand instead of the DDNAME operand
when using the WSim/ISPF Interface.

Chapter 4. Defining general simulation statements 41

WORKSET=worknum
Function: Specifies the number of 4096-byte blocks to be kept in virtual
storage.

Format: An integer from 2 to 4095.

Default: The number of blocks required to hold the first 4096-byte block of
each message generation deck plus one.

Note: You can code the DDNAME operand or the SPACE operand, but not both.

No work data set allocation or writing of blocks to disk will be done during a
preprocessor run.

NTWRK - network definition statement

Network Control Operands
name NTWRK [,CNTRS={integer|3}]

[,CNTRSEED={integer|7935629}]
[,CONRATE={YES|NO}]
[,DELYSEED={integer|9104901}]
[,EMTRATE=(rate,interval)]
[,EXIT=member]
[,HEAD={’chars’|’WSim INTERVAL REPORT’}]
[,INEXIT=member]
[,INFOEXIT=member]
[,INHBTMSG=(integer,integer-integer,WTO,ACT)]
[,INXEXPND={YES|NO}]
[,ITIME={integer|2}]
[,NAMEHASH={integer|10}]
[,NCTLEXIT=member]
[,NETEXIT=member]
[,NETUSER={integer|0}]
[,OPTIONS=(option1[,...])] .
[,OUTEXIT=member]
[,PATHSEED={integer|1532001}]
[,REPORT={FULL|LINE|RATE|NONE}]
[,SCAN=(x,y[,z[,sname]])]
[,SEQ=(integer|0)]
[,STIME={integer|0}]
[,TEXTSEED={integer|3841995}]
[,UCMDEXIT=member]
[,UTBLSEED={integer|5736539}]
[,UTI={integer|0}]
[,UXOCEXIT=member]

Function

The NTWRK statement is required. It performs the following functions:
v Provides a name for controlling the network with operator commands
v Specifies characteristics that apply to the network as a whole
v Specifies operands that carry default values to lower level statements.

See Table 4 on page 17 for operands that can be coded on this statement to provide
defaults for lower-level statements and where these operands are defined.

42 WSim Script Guide and Reference

222
222

Where

name
Function: Specifies the symbolic name used to identify the network on reports
or for operator commands. This is also the member name in the INITDD data
set.

Format: A 1- to 8-character name that conforms to standard JCL member name
conventions. The first character of name must not be a numeric character.

Default: None. This field is required.

CNTRS={integer|3}
Function: Specifies the largest counter allocated for each line, terminal, and
device, as well as the largest counter allocated for the entire network, when
user exits are specified. If user exits are not specified, this operand is ignored
and the number of counters allocated will be equal to the largest counter
referenced in the network. If user exits are specified, the number of counters
allocated will be equal to either the value specified on the CNTRS= operand or
the number of counters referenced in the network, whichever is larger.

If user exits are used, the value returned via the interface routine, word 2
request X'55' will represent the number of counters allocated, which may or
may not be the value coded on the CNTRS= operand.

Note: The largest counter allocated will be 3.

Format: An integer from 3 to 4095.

Default: 3

CNTRSEED={integer|7935629}
Function: Specifies the seed value to be used when generating random
numbers for the SET statement.

Format: An integer from 1 to 2147483647.

Note: The default value was selected to provide a uniform random
distribution. Care should be exercised in selecting other values.

Default: 7935629

CONRATE={YES|NO}
Function: Specifies whether or not the interval report message rates are to be
printed at the operator console each time an interval report is printed for the
network.

Format: YES or NO.

Default: NO

DELYSEED={integer|9104901}
Function: Specifies the seed value to be used when generating numbers for
calculating average delays and selecting delay values from rate tables.

Format: An integer from 1 to 2147483647.

Note: The default value was selected to provide a uniform random
distribution. Care should be exercised in selecting other values.

Default: 9104901

EMTRATE=(rate,interval)
Function: Specifies a message transfer rate (messages transmitted by WSim)

Chapter 4. Defining general simulation statements 43

and an adjustment interval through which WSim automatically adjusts the UTI
to maintain the desired rate for an entire network. Refer to , SC31-8945 for a
discussion of automatic UTI adjustment.

Format: For the EMTRATE operand, you can code the following values:

rate Specifies the number of messages per minute to be transmitted by the
network, where rate is an integer from 0 to 65535.

interval
Specifies the duration, in seconds, of the interval at which the UTI is to
be adjusted to affect the desired rate, where interval is an integer from
0 to 65535.

Default: None. This operand is optional.

EXIT=member
Function: Specifies the member (network-level user exit load module) in the
load library, or a library concatenated to it, which is to be loaded with the
network and is to gain control each time a message is transmitted or received
at a terminal or device.

Note: If you code the EXIT operand, you cannot code the NETEXIT, INEXIT,
OUTEXIT, or NCTLEXIT operands. Refer to , SC31-8950 for more information
on user exit facilities.

Format: A 1- to 24-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

HEAD={'chars'|'WSim INTERVAL REPORT'}
Function: Specifies the heading which is printed on each interval report for the
network.

Format: 1 to 24 characters enclosed in single quotes.

Default: "WSim INTERVAL REPORT"

INEXIT=member
Function: Specifies the member (input user exit load module) in the load
library, or a library concatenated to it, which is to be loaded with the network
and is to gain control each time a message is received at a terminal or device.
Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

INFOEXIT=member
Function: Specifies the member (informational user exit load module) in the
load library, or a library concatenated to it, which is to be loaded with the
network and is to gain control each time a WSim-generated informational
message is logged on the log data set.

Note: Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name which conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

44 WSim Script Guide and Reference

INHBTMSG=(integer,integer-integer,WTO,ACT)
Function: Specifies the messages (ITPxxxI) that are not to be displayed on the
console and not written to the log data set.

Format: For the INHBTMSG operand, you can code one or more of the
following values (separated by commas):

integer Specifies a particular message number to be inhibited. For a list of
messages that cannot be inhibited, see the following note:

Note: The following messages cannot be inhibited:

WSim Console Messages (1-399)

001 066-067 098-099 180-188
003-005 069-073 101-106 190-201
007-008 075 108-112 207-224
011 078-088 114-120
017-021 090 164-167
023-028 093 169-173
030-062 095 176

WSim Log Data Messages (401-499)

401-402 419-420 459-466
406 433-440 471-472
408-409 442 477
411-413 457 491
415-417

integer-integer
Specifies a range of messages to be inhibited. Even if a particular
message within the range cannot be inhibited, no error checking will
be done.

WTO Specifies that the Write-to-Operator statements are to be inhibited
(ITP113I, ITP137I).

ACT Specifies that the activation messages are to be inhibited (ITP089I,
ITP091I, ITP092I, ITP094I, ITP107I, ITP174I, ITP175I).

Refer to , SC31-8951 for descriptions of these messages.

Default: None. This operand is optional.

INXEXPND={YES|NO}
Function: Specifies whether data expansion is allowed when an input user exit
is called. If you specify INXEXPND=YES, input data is moved to an area that
allows data expansion up to the length specified by the BUFSIZE operand
before the input user exit is called. The input exit can then adjust the length
and contents of the data up to that size. The size of the buffer available is
passed as one of the parameters to the input exit. Refer to , SC31-8950 for more
information about input user exits.

Format: YES or NO.

Default: NO

ITIME={integer|2}
Function: Specifies the time in minutes between network interval reports.

Format: An integer from 1 to 240 (4 hours).

Chapter 4. Defining general simulation statements 45

Default: 2

NAMEHASH={integer|10}
Function: This operand is used to determine the size of the table used in
locating a particular name within the network. For very large networks,
increasing the value of this operand may improve performance in cases where
WSim must locate a particular resource, such as in processing operator
commands. The number of entries in the table is two raised to the value coded
for NAMEHASH.

Format: An integer from 2 to 18. The recommended size of the table is 30%
more entries than the number of names in the network.

Default: 10. This provides for 1024 entries in the table.

NCTLEXIT=member
Function: Specifies the member (network control user exit load module) in the
load library, or a library concatenated to it, which is to be loaded with the
network and is to gain control each time a network is initialized, reset, or
cancelled. Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

NETEXIT=member
Function: Specifies the member (network-level user exit load module) in the
load library, or a library concatenated to it, that is to be loaded with the
network and is to gain control in all situations that INEXIT, OUTEXIT,
NCTLEXIT, and UCMDEXIT are invoked unless overridden for that situation
by one of the more specific exit operands.

Note: Code either the EXIT operand or the NETEXIT operand, but not both.
Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

NETUSER={integer|0}
Function: Defines an area of storage that can be used as a work area by user
exits or any device or logical unit in the network that is capable of message
generation.

Format: An integer from 0 to 32767.

Default: 0

Note: If integer is not a multiple of eight bytes, this value is rounded up to the
next multiple of eight bytes.

OPTIONS=(option[,...])
Function: Specifies various options that are to be used in this network.

Format: For the OPTIONS operand, you can code one or more of the following
keywords (separated by commas):

CONRATE
Specifies that the interval report message rates are to be printed at the
operator console each time an interval report is printed for the

46 WSim Script Guide and Reference

network. Specifying this option is the same as coding the
CONRATE=YES operand on the NTWRK statement.

DEBUG
Specifies that the network is being executed in debug mode, which
causes the following information to be written to the log data set:
v CPI-C trace data at the VTAM APPC API level.
v TCP/IP trace data at the negotiations level.

MONCMND
Specifies that the operator commands executed from the message
generation deck will be monitored on the console as they are
processed.

Default: If you do not code this operand, the DEBUG and MONCMND
options will not be active, and the CONRATE option will default to the
CONRATE operand setting or to its default of CONRATE=NO. If you specify
both the CONRATE operand and the CONRATE option, the setting processed
last will take effect.

OUTEXIT=member
Function: Specifies the member (output user exit load module) in the load
library, or a library concatenated to it, which is to be loaded with the network
and is to gain control each time a message is transmitted at a terminal or
device. Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

PATHSEED={integer|1532001}
Function: Specifies the seed value to be used when generating random
numbers for selecting PATH entries according to the distribution specified on a
DIST statement.

Format: An integer from 1 to 2147483647.

Note: The default value was selected to provide a uniform random
distribution. Care should be exercised in selecting other values.

Default: 1532001

REPORT={FULL|LINE|RATE|NONE}
Function: Specifies the type of interval report to be printed for this network.

Note: This operand has no effect on the information printed on the end report
when the network is canceled.

Format: For the REPORT operand, you can code one of the following values:

FULL Specifies that the entire report, including terminal and device statistics,
line totals, cumulative totals, and rates, will be printed.

LINE Specifies that the report will include only line totals, cumulative totals,
and message rates.

RATE Specifies that the report will include only the network totals and
message rates.

NONE
Specifies that no interval report is to be printed.

Chapter 4. Defining general simulation statements 47

Default: FULL

SCAN=(x,y[,z[,sname]])
Function: Specifies the inclusion of the Scan/Display/Recovery option for the
network. For more information on these functions, refer to , SC31-8945.

Format: For the SCAN operand, you can code the following values:

x Specifies the interval in minutes between the inactive terminal reports,
where x is an integer from 0 to 255. If you code 0 for this value, no
reports will be generated.

y Specifies the time of inactivity in minutes before a terminal is listed as
inactive, where y is an integer from 0 to 255. If you code 0 for this
value, the terminal will not become inactive, and no inactivity report
will be generated.

z Specifies the number of minutes to delay after detecting a terminal is
inactive before invoking automatic terminal recovery. If you omit this
value, automatic terminal recovery is not invoked. If you code 0 for
this value, automatic terminal recovery is invoked as soon as the
terminal is detected as inactive.

sname Specifies a message generation deck to be used as a substitute message
generation deck for those decks that cause terminals to enter automatic
terminal recovery. If you code this operand and a terminal enters
automatic terminal recovery, a delete path entry function will
automatically be performed. The message generation deck named in
the current path entry will be deleted, and sname will be substituted
for it. The path is changed for all terminals that reference it. If you do
not code sname, or if sname has itself been deleted, no automatic delete
will be performed. Refer to , SC31-8948 for more information on the
delete and reinstate function of the A (Alter) operator command.

Default: None. This operand is optional.

Note: You can change the values for x, y, and z by using the A (Alter) operator
command.

SEQ=(integer|0)
Function: Specifies the initial value for DSEQ, the device counter for the
network.

STIME={integer|0}
Function: Specifies the startup delay in seconds for the VTAM applications,
APPC LUs, and TCP/IP connections. For example, if STIME=4, the first such
resource will start at 4 seconds, the second at 8, and the third at 12. The timing
starts when you enter the START command for the network.

Format: A 1- to 3-digit integer from 0 to 999.

Default: 0. All such resources will be started when the network is started.

TEXTSEED={integer|3841995}
Function: Specifies the seed value to be used when generating random
numbers to be included in statement data with the RNUM special option.

Format: An integer from 1 to 2147483647.

Note: The default value was selected to provide a uniform random
distribution. Care should be exercised in selecting other values.

Default: 3841995

48 WSim Script Guide and Reference

222
222
222

UCMDEXIT=member
Function: Specifies the member (operator command user exit load module) in
the load library, or a library concatenated to it, which is to be loaded with the
network and is to gain control each time the operator enters a $ (User Exit)
operator command. Refer to , SC31-8950 for more information on user exit
facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

UTBLSEED={integer|5736539}
Function: Specifies the seed value to be used when generating random
numbers for selecting entries from a user table (UTBL), either randomly or
according to the distribution specified on a UDIST statement.

Format: An integer from 1 to 2147483647.

Note: The default value was selected to provide a uniform random
distribution. Care should be exercised in selecting other values.

Default: 5736539

UTI={integer|0}
Function: Specifies the network level user time interval (UTI) to be used in
computing intermessage delays or think times for the simulated devices.

Format: One to five digits specifying the number of 0.01 second intervals,
where integer has a maximum of 65535.

Default: 0 (no delay)

Note: This value can be overridden by specifying IUTI on a lower level device.
See , SC31-8945 for more information.

UXOCEXIT=member
Function: Specifies the member (user exit operator command and user exit
load module) in the load library, or a library concatenated to it, that is to be
loaded with the network and is to gain control each time an operator
command that was issued from the User Exit Interface Routine using the
function that requests notification of the end of command execution ends.
Refer to , SC31-8950 for more information on user exit facilities.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is optional.

NTWRKLOG - network log data set statement

[name] NTWRKLOG {DDNAME=ddname}
[,NCP={integer|5}]

Function

The NTWRKLOG statement specifies a separate log data set for the network. This
statement is optional.

Chapter 4. Defining general simulation statements 49

Note: Only three NTWRKLOG statements are supported when you use the
WSim/ISPF Interface.

Where

name
Function: Specifies the name for this statement.

Format: A 1- to 8-character name.

Default: None. This field is optional.

DDNAME=ddname
Function: Specifies the name of a DD statement in the execution JCL that
defines the log data set for the network.

Format: A 1- to 8-character name that conforms to standard JCL naming
conventions.

Default: None. You must code the DDNAME operand.

NCP={integer|5}
Function: Specifies the number of buffers used to write to the log data set. The
length of each buffer is determined by BLKSIZE.

Format: An integer from 2 to 255.

Default: 5

Note:
In OS systems, NCP can be specified on the DD statement, and if so, it will
override the value specified on the NTWRKLOG statement. In general, the
precedence order is as follows:
1. DD statement DCB suboperand NCP (for OS systems)
2. NTWRKLOG NCP operand
3. NCP execution parameter
4. 5 (default).

Note: If a network does not specify an NTWRKLOG data set to be used, all data
for that network will be logged to a general log data set. If it is not possible to
associate some data with a specific network, the data will be logged to the general
log data set.

PATH - message generation sequence statement

name PATH deck[,...]
[,CYCLIC={YES|NO}]

Function

The PATH statement is required. It specifies the sequence in which the message
generation decks are to be referenced during the simulation run.

50 WSim Script Guide and Reference

Where

name
Function: Specifies the name to be used in a configuration definition statement
PATH operand to reference this PATH statement.

Format: From one to eight alphanumeric characters.

Default: None. This field is required.

deck[,...]
Function: Specifies the name of a message generation deck to be referenced on
this path.

Format: A 1- to 8-character name that conforms to standard JCL naming
conventions.

Default: None. You must code at least one message generation deck.

Note: When a terminal references a PATH statement with CYCLIC=NO, the
message generation decks will be used in the sequence specified on the PATH
statement, unless there is a DIST statement corresponding to this PATH
statement. When the final message generation deck selected by the PATH
statements is completely processed, the processing begins again with a
message generation deck selection from the first PATH statement and the cycle
is repeated.

CYCLIC={YES|NO}
Function: Specifies whether an individual path is cyclic. For a PATH with
CYCLIC=YES, the first terminal or device to select that path will select the first
entry, the second will select the second entry, and the third will select the third
entry. When the last entry has been selected, the next terminal to select the
path will select the first entry.

Format: YES or NO.

Default: NO

Note: You can code this operand either before all message generation deck
names or after all message generation deck names, but you cannot code it
between message generation deck names. If you code a DIST statement that
corresponds to a cyclic PATH statement, the DIST statement will be ignored in
path selection.

RATE - rate table statement

integer RATE member

Function

The RATE statement specifies a rate table member in the partitioned data set
described by the RATEDD DD statement in the execution JCL. It also specifies an
integer name which can be referenced by delay operands on other statements.

The RATE statement is optional, but it can be coded more than once.

Chapter 4. Defining general simulation statements 51

Where

integer
Function: Specifies the number used by the DELAY operand to reference this
member.

Format: An integer from 0 to 255.

Default: None. This number is required.

member
Function: Specifies the member that WSim will load as the rate table.

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is required.

RN - random number statement

integer RN [HIGH={integer|100}]
[,LOW={integer|0}]

Function

The RN statement defines the lower and upper limits for generation of a random
number to be inserted into a data field or used as a delay value. It is referenced by
the RNUM data field option or an R delay value.

The RN statement is optional, but it can be coded more than once.

Where

integer
Function: Specifies the number to be used to reference this statement in
message generation.

Format: An integer from 0 to 255.

Default: None. This number is required.

HIGH={integer|100}
Function: Specifies the upper limit of the random number to be generated.

Note: The upper limit must be greater than the LOW specification.

Format: An integer from 1 to 2147483647.

Default: 100

LOW={integer|0}
Function: Specifies the lower limit of the random number to be generated.

Note: The lower limit must be less than the HIGH specification.

Format: An integer from 0 to 2147483646.

Default: 0

Note: The HIGH and LOW values are included within the range of random
numbers.

52 WSim Script Guide and Reference

SIDEEND - side information table end statement

[name] SIDEEND

Function

The SIDEEND statement defines the end of a CPI-C side information table.

Where

name
Function: Specifies the symbolic name of this statement (for user information
only).

Format: 1 to 8 alphanumeric characters.

Default: None. This field is optional.

SIDEENT - side information table entry statement

[name] SIDEENT [DESTNAME=name]
[,LUNAME=name]
[,MODENAME=name]
[,TPNAME={name|’name’|(name)|(’name’)}]

Function

The SIDEENT statement defines and names one symbolic destination name in a
CPI-C side information table.

Where

name
Function: Specifies the symbolic name of this statement (for user information
only).

Format: 1 to 8 alphanumeric characters.

Default: None. This field is optional.

DESTNAME=name
Function: Specifies the CPI-C symbolic destination name that is being defined.

Format: A 1- to 8-character name from character set 011341.

Default: None.

Note: The DESTNAME must be unique within the table.

LUNAME=name
Function: Specifies the LU name to be associated with the symbolic
destination.

1. For the definition of character sets 01134 and 00640, refer to SAA Common Programming Interface Communications Reference.

Chapter 4. Defining general simulation statements 53

Format: A 1- to 17-character name from character set 011341. A fully-qualified
name is specified as a network ID (up to 8 characters), followed by a period,
followed by an LU name (up to 8 characters).

Default: The DESTNAME value.

MODENAME=name
Function: Specifies the mode name to be associated with the symbolic
destination.

Format: A 1- to 8-character name of a VTAM logon mode table (MODETAB)
entry. The mode name must be from character set 011341.

Default: #INTER

TPNAME={name|'name'|(name)|('name')}
Function: Specifies the name of a CPI-C transaction program that is to be
associated with the symbolic destination.

Format: A 1- to 64-character name specified as a string of up to 64 characters
or 128 hexadecimal digits. The TP name must be from character set 006401. A
quoted name indicates that it is a hexadecimal string.

The name can be continued across multiple lines by placing a comma after the
last digit on a line and continuing with the next digit anywhere beyond
column 1 on the next line. If the name is continued across multiple lines, it
must be enclosed in parentheses.

Default: The DESTNAME value.

SIDEINFO - side information table begin statement

[name] SIDEINFO

Function

The SIDEINFO statement defines the beginning of a CPI-C side information table.
This statement is optional.

The symbolic destination names defined in this table are known globally in the
network. The definition can be overridden at the LU level by using the SIDEINFO
operand on the APPCLU statement.

Where

name
Function: Specifies the symbolic name of this statement (for user information
only).

Format: 1 to 8 alphanumeric characters.

Default: None. This field is optional.

UDIST - UTBL distribution statement

integer UDIST weight[,...]

54 WSim Script Guide and Reference

Function

The UDIST statement defines a probability distribution to be used in choosing
entries from a UTBL statement. The UDIST statement is referenced by the UTBL
data field option.

The UDIST statement is optional but if used, it can be coded up to a maximum of
256 times.

Where

integer
Function: Specifies the number to be used to identify this distribution in the
TEXT statement special option field.

Format: An integer from 0 to 255.

Default: None. This field is required.

weight[,...]
Function: The number specified assigns a relative weight to the corresponding
UTBL entry. Each weight represents a fractional value of the total weights
specified on this UDIST statement. This fractional value is determined by
dividing the specified weight by the total of all weights. The probability that a
particular UTBL entry will be chosen for message generation on any given
selection is this fractional value.

Format: A series of integers from 0 to 9999 separated by commas.

You can code up to a maximum of 2000 weights. The number of weights
entered must be less than or equal to the number of entries on the
corresponding UTBL statement referenced in the TEXT statement special option
field. The sum of the weights must be greater than zero and must not exceed
9999.

Default: None. You must code at least one weight.

UTBL - user data table statement

integer UTBL {(entry)[,...]}
{member}

Function

The UTBL statement builds a table of user data entries that can be inserted in data
fields. The UTBL statement is optional, but if used, can be coded more than once.
MSGUTBLs can be referenced directly using the name field value coded on an
MSGUTBL statement.

Where

integer
Function: Specifies the number used to identify this table. This number is
referenced by the UTBL data field option.

Format: An integer from 0 to 255.

Chapter 4. Defining general simulation statements 55

Default: None. This number is required.

(entry)[,...]
Function: Specifies the actual text to be inserted in the message being
composed.

Format: Any amount of data enclosed in parentheses. However, it may be
truncated during message generation. Enter hexadecimal data by enclosing the
digits in single quotes. To enter single quotes or parentheses in the data, enter
two of the characters. If an entry contains more data than can be specified on
one record, it can be continued by coding data through column 71 and
continuing in column 2 of the next record or by using the “+” continuation
character.

You can code up to a maximum of 2147483647 entries for each UTBL
statement. The length of the entries in the table will vary with the length of the
data entered. When entering hexadecimal data into the table, make sure that
line control characters are not included in the data.

Default: None. At least one entry or a member must be specified.

member
Function: Specifies the name of an MSGUTBL statement from which the user
data table entries will be obtained.

Note: The MSGUTBL statements are stored as separate members of the data
set named by the MSGDD DD statement.

Format: A name from one to eight alphanumeric characters.

Default: None. You must code either a member or a list of user data entries.

UTI - user time interval statement

name UTI integer

Function

The UTI statement defines an alternate UTI for resources in the network. This UTI
can be referenced by specific devices with the IUTI operand or from within
message generation decks. Defining more than one UTI allows you to have devices
operating at different speeds within the same network.

Where

name
Function: Specifies a name to be used to reference this UTI.

Format: From one to eight alphanumeric characters.

Default: None. This field is required. The character string 'NTWRKUTI' is
reserved. It is used to reference the network level UTI value.

integer
Function: Specifies user time interval (UTI) to be used in computing
intermessage delays or think times. integer specifies the number of 0.01 second
intervals.

Format: An integer from 0 to 65535.

56 WSim Script Guide and Reference

Default: None.

Chapter 4. Defining general simulation statements 57

58 WSim Script Guide and Reference

Chapter 5. Defining CPI-C simulation statements

This chapter describes Common Programming Interface Communications (CPI-C)
network configuration definition statements. These statements are listed in
alphabetical order. For more information about the order in which you need to
code these statements, see Table 3 on page 13.

When you code the network configuration definition statements, you can code the
common operands for the network resources at the highest level statements and
override them on lower level statements, if necessary.

Summary of operands
Table 5 lists the operands you can use in a CPI-C simulation, the statements where
they appear, and other statements wherethey can be coded.

Table 5. CPI-C simulation operands

Operand Appears on Can also be coded on

APPLID APPCLU -

BUFSIZE APPCLU NTWRK

CNOS APPCLU -

CPITRACE TP APPCLU, NTWRK

DELAY TP APPLCU, NTWRK

FRSTTXT TP APPCLU, NTWRK

INSTANCE TP APPCLU, NTWRK

IUTI TP APPCLU, NTWRK

MAXCALL TP APPCLU, NTWRK

MLEN APPCLU NTWRK

MLOG APPCLU NTWRK

MSGTRACE TP APPCLU, NTWRK

QUIESCE TP APPCLU, NTWRK

PASSWD APPCLU -

PATH TP APPCLU, NTWRK

SEQ TP APPCLU, NTWRK

SIDEINFO APPCLU -

STLTRACE TP APPCLU, NTWRK

TPNAME TP -

TPREPEAT TP APPCLU, NTWRK

TPSTATS TP APPCLU, NTWRK

TPSTIME TP APPCLU, NTWRK

TPTYPE TP APPCLU, NTWRK

UCD TP APPCLU, NTWRK

USERAREA TP APPCLU, NTWRK

© Copyright IBM Corp. 1983, 2015 59

APPCLU - APPCLU statement

[name] APPCLU [BUFSIZE={integer|32767}]
[,MLEN=integer]
[,MLOG={YES|NO}]

APPCLU Operands
[,APPLID=name]
[,CNOS=cnos data]
[,PASSWD=password]
[,SIDEINFO=side info data]

Function

The APPCLU statement defines a VTAM application program symbolic name and
the password associated with that name. WSim uses this VTAM application
program to simulate a logical unit on which CPI-C transaction programs run.All
transaction programs defined on this logical unit use the CPI-C API to perform
program-to-program communications using LU 6.2 protocols. 2 If VTAM
application programs are also defined in the network, all APPCLU definitions must
precede the VTAMAPPL definitions.

See Table 5 on page 59 for operands that can be coded on this statement to provide
defaults for lower-level statements and where these operands are defined.

Where

name
Function: Specifies the symbolic name used to reference the resource on
printed reports, with the data field options in the scripting statements, and
with operator commands.

Format: From one to eight alphanumeric characters.

Default: APPLID operand value.

Note: You must code either the APPCLU name field or APPLID operand value.

APPLID=name
Function: Specifies the VTAM application program symbolic name. This name
must match an entry in VTAM's configuration tables (VTAMLST) created using
a VTAM APPL definition statement. The name specified is the name of the
APPL statement or ACBNAME operand value coded on an APPL statement.
The VTAM APPL definition in the VTAMLST must specify APPC=YES.

The APPLID name must be unique within all APPC LUs defined in the
simulation.

Format: From one to eight alphanumeric characters.

Default: The APPCLU name field value.

Note: You must code either the APPCLU name field or APPLID operand value.

BUFSIZE={integer|32767}
Function: Specifies the maximum size of the buffers which the TPs defined on

2. LU 6.2 is also called Advanced Program-to-Program Communication (APPC).

60 WSim Script Guide and Reference

this APPC LU will use to send and receive data. Buffers that are generated
dynamically by WSim will be the size specified by this operand. Buffers that
are defined in scripts must be equal to or less than the size specified by this
operand.

Format: An integer from 100 to 32767.

Default: 32767

CNOS=cnos data

CNOS=((LUNAME=name
[,MODENAME=name]
[,SESSIONS={integer|2}]
[,CWL={integer|1}]
[,CWP={integer|1}])

.

.

.
[,(LUNAME=name
[,MODENAME=name]
[,SESSIONS={integer|2}]
[,CWL={integer|1}]
[,CWP={integer|1}])])

Function: Specifies the partner LU name and mode name, and their associated
session limits. For any LU pairs for which no CNOS specification has been made,
WSim manages sessions as required for the simulation run.

Format: For the CNOS operand, you can specify the following:

CWL={integer|1}
Function: Specifies the minimum number of contention winner sessions for
the local LU.

Format: An integer from 0 to 32767. The total of the contention winners for
the local and partner LUs must be less than or equal to the session limit.

Default: The value specified on the APPL statement that defines this APPC
LU in the VTAMLST. If no value is specified on the APPL statement, the
default is 1.

CWP={integer|1}
Function: Specifies the minimum number of contention winner sessions for
the partner LU.

Format: An integer from 0 to 32767. The total of the contention winners for
the local and partner LUs must be less than or equal to the session limit.

Default: The value specified on the APPL statement that defines this APPC
LU in the VTAMLST. If no value is specified on the APPL statement, the
default is 1.

LUNAME=name
Function: Specifies the partner LU name.

Format: A 1- to 17-character name from character set 011343.A
fully-qualified name is specified as a network ID (up to 8 characters),

3. For the definition of character sets 01134 and 00640, refer to SAA Common Programming Interface Communications Reference.

Chapter 5. Defining CPI-C simulation statements 61

followed by a period, followed by an LU name (up to 8 characters). The
combination of LUNAME and MODENAME must be unique within the
CNOS operand.

Default: None. This field is required.

MODENAME=name
Function: Specifies the mode to which the session limit applies.

Format: A 1- to 8-character name of a VTAM logon mode table
(MODETAB) entry. The mode name must be from character set 011343. The
combination of LUNAME and MODENAME must be unique within the
CNOS operand.

Default: If this parameter is omitted, the session limits will apply to all
modes used by the pair of LUs.

SESSIONS={integer|2}
Function: Specifies the session limit between the local LU and the partner
LU for the mode specified.

Format: An integer from 1 to 32767.

Default: The value specified on the APPL statement that defines this APPC
LU in the VTAMLST. If no value is specified on the APPL statement, the
default is 2.

MLEN=integer Function: Specifies the maximum number of data characters to be
written to the log data set for each data transfer.

Format: An integer from 100 to 32767.

Note: If this value is larger than the data transferred, the entire transmission is
logged. If the specification is smaller than the amount of data transferred, only the
specified length is logged.

Default: If you omit this operand, the entire transmission will be logged.
MLOG={YES|NO} Function: Specifies whether this LU will use the message
logging function.

Format: YES or NO.

Default: YES PASSWD=passwordFunction: Specifies the password associated with
the VTAM application program symbolic name. This password must match the
PRTCT operand value coded on the corresponding APPL statement in the
VTAMLST.

Format: From one to eight alphanumeric characters.

Default: APPLID operand value.

SIDEINFO=side info data

62 WSim Script Guide and Reference

SIDEINFO=((DESTNAME=name
[,LUNAME=name]
[,MODENAME=name]
[,TPNAME={name|’name’|(name)|(’name’)}])

.

.

.
[,(DESTNAME=name
[,LUNAME=name]
[,MODENAME=name]
[,TPNAME={name|’name’|(name)|(’name’)}]))

Function: Specifies a side information table for this APPC LU. Symbolic destination
names that are defined at the LU level override any definitions for the same
symbolic destination names specified at the network level via the SIDEINFO
network definition statement.

Format: For the SIDEINFO operand, you can specify the following parameters:

DESTNAME=name
Function: Specifies the symbolic destination name.

Format: A 1- to 8-character name from character set 011344. The
DESTNAME must be unique within the SIDEINFO operand.

Default: None. This operand is required.

LUNAME=name
Function: Specifies the LU name to be associated with the symbolic
destination. A fully-qualified name is specified as a network ID (up to 8
characters), followed by a period, followed by an LU name (up to 8
characters).

Format: A 1- to 17-character name from character set 011344.

Default: The DESTNAME value.

MODENAME=name
Function: Specifies the mode name to be associated with the symbolic
destination name.

Format: A 1- to 8-character name of a VTAM logon mode table
(MODETAB) entry. The mode name must be from the character set 011344.

Default: #INTER

TPNAME={name|(name)|'name'|('name')}
Function: Specifies the transaction program name to be associated with the
symbolic destination name.

Format: A 1- to 64-character name specified as a string of up to 64
characters or 128 hexadecimal digits. A quoted name indicates that it is a
hexadecimal string. The TP name must be from character set 006404.

The name can be continued across multiple lines by placing a comma after
the last digit on a line and continuing with the next digit anywhere
beyond column 1 on the next line. If the name is continued across multiple
lines, it must be enclosed in parentheses.

Default: The DESTNAME value.

4. For the definition of character sets 01134 and 00640, refer to SAA Common Programming Interface Communications Reference.

Chapter 5. Defining CPI-C simulation statements 63

TP - CPI-C transaction program definition statement

[name] TP [CPITRACE={MSG|VERB|VERBEND|NONE}]
[,DELAY={A(integer)}

{F(integer)}
{R(integer1[,integer2])}
{T(integer)}
{F(1)}]

[,FRSTTXT=deck]
[,INSTANCE={(initial,maximum)|(1,1)}]
[,IUTI=uti]
[,MAXCALL={integer|5}]
[,MSGTRACE={YES|NO}]
[,PATH=(name,...)]
[,QUIESCE={YES|NO}]
[,SEQ={integer|0}]
[,STLTRACE={YES|NO}]
[,TPNAME={name|’name’|(name)|(’name’)}]
[,TPREPEAT={YES|NO|integer}]
[,TPSTATS={YES|NO}]
[,TPSTIME={integer|0}]
[,TPTYPE={CLIENT|SERVER}]
[,UCD={YES|BOTH|NO}]
[,USERAREA={integer|0}]

Function

The TP statement defines a CPI-C transaction program (TP). One or more TP
statements follow the APPCLU statement and define all TPs for that LU. For each
TP that is resident on a given LU, a TP statement must be specified following the
APPCLU statement that defines the LU. At least one TP statement must be
specified after each APPCLU. The same TP name may be specified after multiple
APPCLU statements (the associated path list does not need to be the same).

Note: All of the TP statement operands except TPNAME may be coded on the
APPCLU statement or the NTWRK statement.

Where

name
Function: Specifies the symbolic name used to reference the resource on
printed reports, with the data field options in the scripting statements, and
with operator commands.

Note: To avoid confusion when running WSim or the log data set analysis
programs, all resources in a network should have unique names.

Format: From one to eight alphanumeric characters.

Default: The TPNAME operand value.

Note: You must code either the TP name field or TPNAME operand value.

CPITRACE={MSG|VERB|VERBEND|NONE}
Function: Specifies the level of CPI-C tracing that is written to the log data set
for formatting by the loglist program.

Format: For the CPITRACE operand, you can specify one of the following
values:

64 WSim Script Guide and Reference

MSG Specifies that WSim is to log only trace messages indicating the
issuance and completion of CPI-C verbs. This option enables tracing of
CPI-C verb flows, states, and return codes in a very concise manner.
The messages are logged in a compressed form that requires minimal
space in the log dataset.

VERB Specifies that WSim is to log the complete CPI-C verbs when they are
issued and when they complete. This option enables tracing of CPI-C
verb flows, parameters, states and return codes in a more expansive
manner than the MSG option. This option requires more space in the
log dataset than the MSG option.

VERBEND
Specifies that WSim is to log CPI-C verbs only when they complete.
This option provides the same type of trace as the VERB option, except
that only verb completions are logged.

NONE
Specifies that no CPI-C trace information is to be logged.

Note: If CPITRACE=NONE is specified, all CPI-C message logging is
inhibited, including error message logging.

Default: NONE.

DELAY={A(integer)|F(integer)|R(integer1[,integer2])|T(integer)|F(1)}
Function: Specifies the value to be multiplied by the active UTI to define the
delay between issuance of CPI-C verbs that are delimiters.

Note: For CPI-C simulations, the calculation of delay begins immediately after
the current verb has been generated. This is equivalent to THKTIME=IMMED
in a VTAMAPPL simulation.

Format: For the DELAY operand, you can specify one of the following values:

A(integer)
Indicates the delay is to be chosen randomly from the range 0 to 2
times the integer, where integer is an integer from 0 to 1073741823. The
average delay will be integer.

F(integer)
Indicates the delay value is fixed at the value specified by the integer,
where integer is an integer from 0 to 2147483647.

R(integer)
Indicates that the delay is to be chosen randomly from the range
specified by an RN statement, where integer specifies the name field on
an RN statement and is an integer from 0 to 255. For more information
on the RN statement, see “RN - random number statement” on page
52.

R(integer1,integer2)
Indicates that the delay is to be chosen randomly in the range of low
(integer1) to high (integer2) where integer1 is an integer from 0 to
2147483646 and integer2 is an integer from 1 to 2147483647. The value
coded for integer1 must be less than the value coded for integer2.

T(integer)
Indicates that the delay is to be chosen randomly from the rate table
specified by a RATE statement, where integer specifies the name field
on a RATE statement and is an integer from 0 to 255. For more

Chapter 5. Defining CPI-C simulation statements 65

information on the RATE statement, see the Rate Table Statement on
page “RATE - rate table statement” on page 51.

Notes:

v If you code only one integer for a value, the parentheses are optional. For
example, A(5) can also be A5.

v This operand sets the default delay value. Any DELAY statement coded in
the message generation deck overrides this value.

Default: F(1)

FRSTTXT=deck
Function: Defines the first message generation deck to be used when the
transaction program is started.

Format: A 1- to 8-character name specifying one of the message generation
decks.

Default: None. If you omit this operand, the transaction program will begin
with the first message generation deck specified on the PATH operand for the
TP. If no PATH operand is coded or defaulted for this TP, the first path in the
network will be chosen.

INSTANCE={(initial,maximum)|(1,1)}
Function: Specifies the number of instances of the transaction program that are
to be activated when the network is started, and the maximum number of
concurrent instances that are supported.

Format: For initial, the format is an integer from 0 to 32767. For maximum, the
format is an integer from 1 to 32767.

Note:

v If initial has a value of 0, a TP instance will be activated only when an attach
request is received for the TP. This value is typically used for a TP that is
simulating a server in a client/server environment. If 0 is specified as the
initial value for a client TP, the TP will never be activated because WSim
will not allow a client to accept an attach request.

v WSim never allows more than the maximum number of concurrent instances
to be executing simultaneously. Therefore, if the maximum value is less than
the initial value, the maximum concurrent instances will be activated when
the network is started. The remainder of the initial instances will be
activated as other instances terminate.

Default: For both initial and maximum the default is 1.

IUTI=uti
Function: Specifies the name of a user time interval (UTI) which is used in
calculating all delays for this TP, unless overridden by a message generation
statement. uti must reference a UTI statement defined within the network
configuration statements. For more information on the UTI statement, see the
User Time Interval Statement on page “UTI - user time interval statement” on
page 56.

Format: A one to eight alphanumeric character name.

Default: None.

MAXCALL={integer|5}
Function: Specifies the maximum number of outstanding message generation
deck calls for the transaction program.

66 WSim Script Guide and Reference

Format: An integer from 0 to 255.

Default: 5

MSGTRACE={YES|NO}
Function: Specifies whether message generation trace records for this resource
should be written to the log data set.

Format: YES or NO.

Default: NO

PATH=(name,...)
Function: Specifies the PATH statements for message generation deck selection
to be referenced by this transaction program in controlling message generation.

Format: A list of 1- to 8-character alphanumeric names separated by commas
and enclosed in parentheses.

Default: None. If you omit this operand, the transaction program will execute
all PATH statements in the order in which they are coded in the NTWRK
statement.

QUIESCE={YES|NO}
Function: Specifies whether the transaction program will be automatically
marked quiesced during network initialization. No messages will be generated
for this TP until it is released by an operator command.

Format: YES or NO.

Default: NO

Note: If you do not want the statements to be executed when the first deck
enters message generation, put a STOP statement in the first deck entered to
get the start-up delay.

SEQ={integer|0}
Function: Specifies the initial value for the device sequence counter at network
initialization or after a network reset.

Format: An integer from 0 to 2147483647.

Default: 0

STLTRACE={YES|NO}
Function: Specifies whether STL trace records for this resource should be
written to the log data set.

Format: YES or NO.

Default: NO

TPNAME={name|'name'|(name)|('name')}
Function: Specifies the name of the CPI-C transaction program that is to be
simulated. A TP name may be specified once as a server TP and again as a
client TP for a given APPCLU.

Format: A 1- to 64-character name specified as a string of up to 64 characters
or 128 hexadecimal digits. A quoted name indicates that it is a hexadecimal
string. The TP name must be from character set 006405.

5. For the definition of character sets 01134 and 00640, refer to SAA Common Programming Interface Communications Reference.

Chapter 5. Defining CPI-C simulation statements 67

The name can be continued across multiple lines by placing a comma after the
last digit on a line and continuing with the next digit anywhere beyond
column 1 on the next line. If the name is continued across multiple lines, it
must be enclosed in parentheses.

Default: The name field value for the TP statement.

Note: You must code either the name field for the TP statement, or the
TPNAME operand value.

TPREPEAT={YES|NO|integer}
Function: Specifies whether message generation should repeat the paths
defined for the transaction program, or should end for the TP when the end of
the path sequence is reached.

Format: For the TPREPEAT operand, you can specify one of the following
values:

YES Specifies that at the end of the path sequence defined for the TP,
message generation should continue with the first deck in the first
path.

NO Specifies that message generation should end for the TP when the end
of the path sequence is reached. This is comparable to the TP
terminating when it reaches the end of the code path.

integer
Specifies the number of times the path sequence for the TP should be
executed. Message generation will end after the path sequence has
been repeated the specified number of times. The value can be from 1
to 32767.

Default: NO

Note: To simulate the way a typical TP would behave, specify NO or take the
default. Specifying YES or an integer allows use of the DIST network definition
statement, or the CYCLIC operand of the PATH statement, to control message
generation. You can use this technique if you want a TP to be repeatedly
executed, perhaps on a delay basis, and you want to select one of multiple
message decks to represent the TP each time it is invoked.

TPSTATS={YES|NO}
Function: Specifies whether statistics about messages sent and received are to
be kept for each individual TP instance.

Format: YES or NO.

Default: NO

Note: If TPSTATS=NO is specified or the default is taken, individual statistics
are kept only for the first instance of each TP. If multiple TP instances are
being simulated, coding TPSTATS=YES will use significantly more run-time
storage. If storage is constrained and statistics are not required for individual
TP instances, code TPSTATS=NO (or accept the default value of NO). Coding
TPSTATS=NO will also significantly improve the performance of simulations
involving large numbers of TP instances.

Note: If a query is issued against a TP that has TPSTATS set to NO, a record
of the instance will be found only if it is still active or it is the first instance.

68 WSim Script Guide and Reference

TPSTIME={integer|0}
Function: Specifies a stagger time to be used in initiating multiple TP instances
at network startup. The value represents the number of .01 second intervals
that should elapse between the start of each TP instance. Using a small stagger
time in conjunction with specifying TPSTATS=NO can significantly improve
the storage utilization of networks involving multiple TP instances. If a stagger
time is not used, all storage requirements for all client TP instances must be
available at network start time. If a stagger time is used, only a small amount
of the total client storage requirements may be needed at any point of time.

Format: An integer from 0 to 65535.

Default: 0

TPTYPE={CLIENT|SERVER}
Function: Specifies whether the TP is a client or a server. A server TP is one
that accepts incoming conversations. A TP may be a client TP on one
conversation and a server TP on another. If a TP can accept an incoming
conversation, it must be specified as a server TP, even though on some
conversations it may be a client. WSim does not allow a client TP to accept
incoming conversations. The same TP name may be specified as both a client
and server on the same APPCLU. The path specified for the server will be
allowed to accept incoming conversations, and the path specified for the client
will not.

Format: CLIENT or SERVER.

Default: CLIENT

UCD={YES|BOTH|NO}
Function: Specifies whether the TP is to recognize user control data and treat it
as if it were application data. Some early LU 6.2 transaction programs tag
application data with the user control data GDS ID. CPI-C does not support
user control data. However, this operand allows the CPI-C implementation to
be compatible with many of these early LU 6.2 applications.

Format: For the UCD operand, you can specify one of the following values:

YES Specifies that user control data is to be treated as application data.
When WSim is sending, the data will be tagged with the user control
data GDS ID. When WSim is receiving, only data tagged with the user
control data GDS ID will be recognized as application data. Data
received that is tagged with the application data GDS ID is ignored.

BOTH Specifies that both user control data and application data are to be
treated as application data. When WSim is sending, the data will be
tagged with the application data GDS ID. When WSim is receiving,
data tagged with either the user control data or the application data
GDS IDs will be recognized as application data.

NO Specifies that user control data should not be treated as application
data. Only data tagged with the application data GDS ID will be
recognized as application data. When WSim is sending, the data will
be tagged with the application data GDS ID. When WSim is receiving,
only data tagged with the application data GDS IDs will be recognized
as application data. Data received that is tagged with the user control
data GDS ID is ignored.

Default: NO

Chapter 5. Defining CPI-C simulation statements 69

Note: If the transaction programs for both the client and the server side of a
conversation are being simulated by WSim, the UCD parameter must be
consistent between the two TP definitions. For example, it is not legitimate to
specify UCD=NO for the client TP and UCD=YES for the server TP. It would,
however, be acceptable to specify UCD=NO for the client and UCD=BOTH for
the server.

USERAREA={integer|0}
Function: Defines an area of storage for this transaction program to be used for
a scratch pad or user exit work area.

Format: An integer from 0 to 32767.

Note: If integer is not a multiple of eight bytes, this value is rounded up to the
next multiple of eight bytes.

Default: 0

70 WSim Script Guide and Reference

Chapter 6. Defining VTAMAPPL simulation statements

The following sections describe VTAMAPPL network configuration definition
statements. These statements are listed in alphabetical order. For more information
about the order in which you need to code these statements, see Table 3 on page
13.

When you code the configuration definition statements, you can code the common
operands for the network resources at the highest level statements and override
them on lower level statements, if necessary.

Operands on the VTAMAPPL and LU statements are grouped according to
function and appear under group headings. You should use an operand within a
group when you define resources that belong to that group.

Note: You can select operands from more than one functional group to define a
particular resource.

Summary of operands
Table 6 lists the operands you can use in a VTAMAPPL simulation, where these
operands are defined, and where these operands can be coded.

Table 6. VTAMAPPL simulation operands

CHAINING LU NTWRK, VTAMAPPL

COLOR LU NTWRK, VTAMAPPL

CRDATALN LU NTWRK, VTAMAPPL

DBCS LU NTWRK, VTAMAPPL

DBCSCSID LU NTWRK, VTAMAPPL

DELAY LU NTWRK, VTAMAPPL

DISPLAY LU NTWRK, VTAMAPPL

DLOGMOD LU NTWRK, VTAMAPPL

ENCR LU NTWRK, VTAMAPPL

Operand Appears on Can also be coded on

ALTCSET LU NTWRK, VTAMAPPL

APLCSID LU NTWRK, VTAMAPPL

APPLID VTAMAPPL -

ATRABORT LU NTWRK, VTAMAPPL

ATRDECK LU NTWRK, VTAMAPPL

BASECSID LU NTWRK, VTAMAPPL

BUFSIZE VTAMAPPL NTWRK

CCSIZE LU NTWRK, VTAMAPPL

EXTFUN LU NTWRK, VTAMAPPL

FLDOUTLN LU NTWRK, VTAMAPPL

FLDVALID LU NTWRK, VTAMAPPL

© Copyright IBM Corp. 1983, 2015 71

Table 6. VTAMAPPL simulation operands (continued)

FRSTTXT LU NTWRK, VTAMAPPL

HIGHLITE LU NTWRK, VTAMAPPL

INIT LU NTWRK, VTAMAPPL

IUTI LU NTWRK, VTAMAPPL

LOGDSPLY LU NTWRK, VTAMAPPL

MAXCALL LU NTWRK, VTAMAPPL

MAXNOPTN LU NTWRK, VTAMAPPL

MAXPTNSZ LU NTWRK, VTAMAPPL

MAXSESS LU NTWRK, VTAMAPPL

MLEN VTAMAPPL NTWRK

MLOG VTAMAPPL NTWRK

MSGTRACE LU NTWRK, VTAMAPPL

PASSWD VTAMAPPL -

PATH LU NTWRK, VTAMAPPL

PROTMSG LU NTWRK, VTAMAPPL

PRTSPD LU NTWRK, VTAMAPPL

PS LU NTWRK, VTAMAPPL

QUIESCE LU NTWRK, VTAMAPPL

RESOURCE LU NTWRK, VTAMAPPL

RSTATS LU NTWRK, VTAMAPPL

RTR LU NTWRK, VTAMAPPL

SAVEAREA LU NTWRK, VTAMAPPL

SEQ LU NTWRK, VTAMAPPL

STLTRACE LU NTWRK, VTAMAPPL

THKTIME LU NTWRK, VTAMAPPL

THROTTLE LU NTWRK, VTAMAPPL

UASIZE LU NTWRK, VTAMAPPL

UOM LU NTWRK, VTAMAPPL

USERAREA LU NTWRK, VTAMAPPL

72 WSim Script Guide and Reference

LU - VTAMAPPL logical unit definition statement

[name] LU [ATRABORT={DECK|PATH|NONE}]
[,ATRDECK=rname]
[,CRDATALN={integer|20}]
[,DELAY={A(integer)}

{F(integer)}
{R(integer1[,integer2])}
{T(integer)}
{F(1)}]

[,FRSTTXT=deck]
[,IUTI=uti]
[,MAXCALL={integer|5}]
[,MSGTRACE={YES|NO}]
[,PATH=(name,...)]
[,PRTSPD=integer]
[,QUIESCE={YES|NO}]
[,RSTATS={YES|NO}]
[,SAVEAREA=(num,size)]
[,SEQ={integer|0}]
[,STLTRACE={YES|NO}]
[,THKTIME={IMMED|UNLOCK}]
[,USERAREA={integer|0}]

SNA Simulation Operands
[,CHAINING={AUTO|MAN}]
[,DLOGMOD=name]
[,ENCR={NONE|OPT|REQD|SEL}]
[,INIT={PRI|SEC}]
[,LUTYPE={LU0|LU1|LU2|LU3|LU4|LU6|LU7}]
[,MAXSESS={(pri,sec)|(0,1)}]
[,RESOURCE=name]
[,RTR={YES|NO}]
[,THROTTLE={n|1}]

Display Simulation Operands
[,DISPLAY=(a,b[,c,d])]
[,LOGDSPLY={BEGIN|BOTH|END|NONE}]
[,PROTMSG={YES|NO}]

3270 Simulation Operands
[,ALTCSET={APL|NONE}]
[,APLCSID=(integer1,integer2|963,310)]
[,BASECSID=(integer1,integer2|697,37)]
[,CCSIZE=(x,y)]
[,COLOR={GREEN|MULTI|ORANGE}]
[,DBCS={YES|NO}]
[,DBCSCSID=(integer1,integer2|370,300)]
[,EXTFUN={YES|NO}]
[,FLDOUTLN={YES|NO}]
[,FLDVALID={YES|NO}]
[,HIGHLITE={YES|NO}]
[,MAXNOPTN={integer|0}]
[,MAXPTNSZ=integer]
[,PS={({S|T},...)|NONE}]
[,UASIZE=(w,h)]
[,UOM={INCH|MM}]

Function

The LU statement must be coded at least once after each VTAMAPPL statement.
The LU statement defines one or more logical unit half-sessions to be simulated
using the WSim/VTAM application program interface, and it defines the type of

Chapter 6. Defining VTAMAPPL simulation statements 73

logical unit simulation to be performed for the SNA half-sessions. You can use this
statement to override the operand defaults from higher level statements.

Where

name
Function: Specifies the symbolic name used to reference the resource on
printed reports, with the data field options in the scripting statements, and
with operator commands.

Note: To avoid confusion when running WSim or the log data set analysis
programs, all resources in a network should have unique names.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

APLCSID=(integer1,integer2|963,310)
Function: Specifies the 3270 character set ID for the alternate APL character set
when you also specify ALTCSET=APL. integer1 specifies the character set
number. integer2 specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (963,310)

ALTCSET={APL|NONE}
Function: Specifies whether the 3270 APL/TEXT character set is to be
supported.

Note: This operand is valid for secondary LU2 and LU3 only.

Format: For the ALTCSET operand, you can code one of the following values:

APL Specifies that the 3270 APL/TEXT character set will be supported. The
APL/TEXT character set uses the graphic escape character (X'08')
followed by the character code point sequences.

NONE
Specifies that the 3270 APL/TEXT character set will not be supported.

Default: NONE

ATRABORT={DECK|PATH|NONE}
Function: Specifies whether the current message generation deck or current
path will be aborted when the device enters automatic terminal recovery.

Format: For the ATRABORT operand, you can code one of the following
values:

DECK Specifies that the current message generation path entry is to be
aborted upon entry to automatic terminal recovery.

PATH Specifies that the current path is to be aborted upon entry to automatic
terminal recovery.

NONE
Specifies that the current path entry is not to be aborted. Message
generation will automatically call the ATRDECK, if it exists, and then
return to the place in the message text deck where the device entered
automatic terminal recovery.

74 WSim Script Guide and Reference

Note: If ATRABORT=NONE is specified and an ATRDECK exists,
there must be an available message generation deck call level for the
ATRDECK to be executed.

Default: DECK

ATRDECK=rname
Function: Specifies the name of a message generation deck to be invoked
automatically as the recovery message generation deck when automatic
terminal recovery is entered. Refer to , SC31-8945 for a discussion of automatic
terminal recovery.

Format: A 1- to 8-character name conforming to standard JCL naming
conventions.

Default: None.

BASECSID=(integer1,integer2|697,37)
Function: Specifies the 3270 character set ID for the base character set. integer1
specifies the character set number. integer2 specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (697,37)

CCSIZE=(x,y)
Function: Specifies the display character cell size for a 3270 device that has
extended function support.

Format: For the CCSIZE operand, you can code the following values:

x Specifies the number of units in the width of the character, where x is
an integer from 0 to 255.

y Specifies the number of units in the height of the character, where y is
an integer from 0 to 255.

The width and height of a fixed character cell must be nonzero values. Variable
character cells must be defined as (0,0). CCSIZE=(x,0) or CCSIZE=(0,y) are not
valid combinations and will be flagged as errors.

When the character cell is defined as variable, the character cell size will be
determined by the device. UASIZE must be coded if CCSIZE=(0,0).

Default: The following default values are assumed if this operand is not
specified:

(9,16) For device with display sizes of less than 3440 bytes

(9,12) For device with display sizes of 3440 or more bytes

(10,8) For a 3270 printer.

CHAINING={AUTO|MAN}
Function: Specifies whether automatic SNA chaining will be performed on the
text data inserted into the terminal buffer during message generation.

Format: For the CHAINING operand, you can code one of the following
values:

AUTO
Indicates that automatic chaining of the text data will be performed.
Specify CHAINING=AUTO to utilize a BUFSIZE operand value greater
than 32000 on the preceding VTAMAPPL statement.

Chapter 6. Defining VTAMAPPL simulation statements 75

MAN Indicates that chaining of the text data will be performed by the
message generation deck.

Default: MAN

COLOR={GREEN|MULTI|ORANGE}
Function: Specifies whether seven color display or four color printer support
will be provided for a 3270 device that has extended function support.

Format: For the COLOR operand you can code one of the following values:

GREEN
Specifies no color support, such as the 3278.

MULTI
Specifies multiple color support, (seven color display or four color
printer).

ORANGE
Specifies color support but displays only in orange.

Default: GREEN

CRDATALN={integer|20}
Function: Specifies the length of the data to be reported in Last Message
Transmitted and Last Message Received in an inactivity report, a response to
the Query operator command, or when the device is in console recovery.

Format: An integer from 20 to 255.

Default: 20

DBCS={YES|NO}
Function: Specifies whether DBCS is supported for the simulated 3270 display.

Format: YES or NO.

Default: NO

Note: When you specify DBCS=YES, the following occurs:
v The DBCS-ASIA and character sets (with DBCS) query reply structure fields

are inserted into the 3270 query reply when it is generated.
v Partitioning and field validation are not supported.

DBCSCSID=(integer1,integer2|370,300)
Function: Specifies the 3270 character set ID for the DBCS character set when
you also code DBCS=YES. integer1 specifies the character set number. integer2
specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (370,300)

DELAY={A(integer)|F(integer)|R(integer1[,integer2])|T(integer)|F(1)}
Function: Specifies the value to be multiplied by the active UTI to define the
delay between sending of messages.

Format: For the DELAY operand, you can code one of the following values:

A(integer)
Indicates the delay is to be chosen randomly from the range 0 to 2
times the integer, where integer is an integer from 0 to 1073741823. The
average delay will be integer.

76 WSim Script Guide and Reference

F(integer)
Indicates the delay value is fixed at the value specified by the integer,
where integer is an integer from 0 to 2147483647.

R(integer)
Indicates that the delay is to be chosen randomly from the range
specified by an RN statement, where integer specifies the name field on
an RN statement and is an integer from 0 to 255.

R(integer1,integer2)
Indicates that the delay is to be chosen randomly in the range of low
(integer1) to high (integer2) where integer1 is an integer from 0 to
2147483646 and integer2 is an integer from 1 to 2147483647. The value
coded for integer1 must be less than the value coded for integer2.

T(integer)
Indicates that the delay is to be chosen randomly from the rate table
specified by a RATE statement, where integer specifies the name field
on a RATE statement and is an integer from 0 to 255.

Notes:

v If you code only one integer for a value, the parentheses are optional. For
example, A(5) can also be A5.

v This operand sets the default delay value. Any DELAY statement coded in
the message generation deck overrides this value.

Default: F(1)

DISPLAY=(a,b[,c,d])
Function: Specifies the default and alternate screen sizes for displays. The
default size for 3270 devices will be set at start time and changed to the
alternate size when WSim receives an ERASE WRITE ALTERNATE command.

Format: 2 or 4 numbers between 1 and 255 specifying the number of rows and
columns for the default and alternate screen sizes.

Note: For 3270 LUs, the display size (for displays) or buffer size (for printers)
as determined by the products (a x b) or (c x d) cannot be greater than 4096, if
EXTFUN=NO, or 16384, if EXTFUN=YES.

Default: The DISPLAY operand can have the following defaults:

(24,80,24,80)
For LU2 and LU3 types.

(24,80) For LU7 types. If you specify an alternative display size for LU7, it is
not used.

Note: If you specify only a and b, c defaults to a, and d defaults to b.

DLOGMOD=name
Function: Specifies the name of a VTAM logon mode table (MODETAB) entry
for an LU.

Format: A 1- to 8-character name that matches the LOGMODE operand name
of an entry in the VTAM logon mode table for this LU.

Default: None.

ENCR={NONE|OPT|REQD|SEL}
Function: Specifies the level of cryptography that is to be established for the
device.

Chapter 6. Defining VTAMAPPL simulation statements 77

Format: For the ENCR operand, you can code one of the following values:

NONE
Specifies that no data encryption is to occur.

OPT Specifies that data encryption is optional depending on a parameter in
the BIND command.

REQD Specifies that data encryption is always required for a session
involving the device.

SEL Specifies that data encryption is selective on an RU basis, as defined by
a bit in the RH.

Default: NONE

EXTFUN={YES|NO}
Function: Specifies whether extended function support is to be provided for a
3270 device.

Note: Extended function support can only be provided for the logical unit
types LU2 and LU3.

Format: For the EXTFUN operand, you can enter one of the following values:

YES Specifies that extended function support will be provided to include
the following:
v The Write Structured Field (WSF) command will be accepted for a

read partition query structured field. A query response will be
generated to reflect the device resources.

v 12- or 14-bit buffer addresses will be accepted from the application.
14-bit addresses will be generated only if the current display buffer
size is greater than 4096 bytes.

v The display device can be defined with display sizes of up to 16384
bytes.

v The Data Analysis/APL character set will not be supported.

NO Specifies that no extended function support will be supplied. The
display device may have display sizes of up to 4096 bytes, and the
Data Analysis/APL character set will be supported.

Default: YES

FLDOUTLN={YES|NO}
Function: Specifies whether field outlining is supported for the simulated 3270
display.

Format: YES or NO.

Default: NO

Note: When you specify FLDOUTLN=YES, the Field Outlining query reply
structured field is inserted into the 3270 query reply when it is generated.

FLDVALID={YES|NO}
Function: Specifies whether field validation support is to be provided for an
LU2 device that has extended function support.

Note: This operand is valid for type LU2 only.

Format: YES or NO.

Default: NO

78 WSim Script Guide and Reference

FRSTTXT=deck
Function: Defines the first message generation deck to be used when the
network is started.

Format: A 1- to 8-character name specifying one of the message generation
decks.

Default: None. If you omit this operand, the devices will begin with the first
message generation deck specified on the PATH operand for the device. If no
PATH operand is coded or defaulted for this device, the first PATH in the
network will be chosen.

HIGHLITE={YES|NO}
Function: Specifies whether highlighting support is to be provided for a 3270
LU2 that has extended function support.

Format: YES or NO.

Default: NO

INIT={PRI|SEC}
Function: Specifies which logical unit will initiate the first SNA session.

Format: PRI or SEC.

Note: For secondary LU half-sessions, if INIT=SEC and the RESOURCE
operand are coded, WSim will automatically generate an INITIATE-SELF
command. If the RESOURCE operand is not coded with INIT=SEC, you must
provide the INITIATE-SELF command with the CMND statement.

Do not code both the RESOURCE statement and the CMND statement or
duplicate INIT-SELFs will be generated.

For primary LU half-sessions, if INIT=PRI and the RESOURCE operand are
coded, WSim will automatically generate an INITIATE-SELF command. If the
RESOURCE operand is not coded with INIT=PRI, you must provide the
INITIATE-SELF command with the CMND statement.

Default: PRI. The primary logical unit will initiate the first session.

IUTI=uti
Function: Specifies the name of a UTI which is used in calculating all delays
for this device, unless overridden by a message generation statement. uti must
reference a UTI statement defined within the network configuration statements.

Format: From one to eight alphanumeric characters.

Default: None.

LOGDSPLY={BEGIN|BOTH|END|NONE}
Function: Specifies whether 3270 display buffers, printer buffers, and 5250
display buffers are to be automatically written to the log data set for
formatting by the loglist program.

Note: This option is meaningful for all simulated devices in the IBM 3270 and
IBM 5250 Information Display Systems. It is meaningful for the following LU
types: LU2, LU3, and LU7. It is ignored for all others.

Format: For the LOGDSPLY operand, you can code one of the following
values:

BEGIN
Specifies that the display buffers are to be logged only at the beginning
of message generation.

Chapter 6. Defining VTAMAPPL simulation statements 79

BOTH Specifies that the display buffers are to be logged at the beginning and
end of message generation.

END Specifies that the display buffers are to be logged only at the end of
message generation.

NONE
Specifies that no display buffers are to be logged.

Default: NONE

LUTYPE={LU0|LU1|LU2|LU3|LU4|LU6|LU7}
Function: Specifies the type of logical unit to be simulated for the SNA
half-session.

Note: WSim will process unformatted function management data (FMD) in a
request/response unit (RU) only for secondary LU2, LU3, and LU7 types of
logical units.

Format: One of the following types must be entered:

LU0, LU1, LU2, LU3, LU4, LU6, LU7

Default: LU0

MAXCALL={integer|5}
Function: Specifies the maximum number of outstanding message generation
deck calls for the device.

Format: An integer from 0 to 255.

Default: 5

MAXNOPTN={integer|0}
Function: Specifies the maximum number of display partitions that can be
defined concurrently for an LU2 device that has extended function support.

Format: An integer from 0 to 16.

Default: 0

MAXPTNSZ=integer
Function: Specifies the maximum size of a partition in bytes.

Note: This operand is valid only when the MAXNOPTN operand value is
greater than zero. Scrollable partitions support is assumed when the
MAXPTNSZ value is greater than the DISPLAY operand value.

Format: An integer from 1 to 32767.

Default: The number of bytes specified by the DISPLAY operand.

MAXSESS={(pri,sec)|(0,1)}
Function: Specifies the maximum number of concurrent half-sessions to be
allowed with this logical unit.

Format: For the MAXSESS operand, you can code the following values
(separated by a comma and enclosed in parentheses):

pri Specifies the maximum number of primary half-sessions permitted,
where pri is a number from 0 to 255.

sec Specifies the maximum number of secondary half-sessions permitted,
where sec is a number from 0 to 255.

Default: (0,1)

80 WSim Script Guide and Reference

Note: Multiple half-sessions that are active concurrently will operate
independently. You must code at least one half-session for pri or sec.
MAXSESS=(0,0) is invalid.

MSGTRACE={YES|NO}
Function: Specifies whether message generation trace records for this resource
should be written to the log data set.

Format: YES or NO.

Default: NO

PATH=(name,...)
Function: Specifies the PATH statements for message generation deck selection
to be referenced by this device in controlling message generation.

Format: A list of alphanumeric names separated by commas and enclosed in
parentheses.

Default: None. If you omit this operand, the device will execute all PATH
statements in the order in which they are coded in the NTWRK statement.

PROTMSG={YES|NO}
Function: Specifies whether the field protected message ITP403I is to be
written to the log data set.

Note: You can also use the INHBTMSG operand on the NTWRK statement to
inhibit the printing of this message.

Format: YES or NO.

Default: YES

PRTSPD=integer
Function: Specifies the speed at which the device being simulated will print
the data received. The device buffer is assumed to be busy for the time taken
to print the data. SNA definite responses will be sent after the data has been
printed.

Format: An integer from 0 to 32767 that specifies the print speed for the device
in characters per second. PRTSPD=0 means “immediate completion of print
operation”.

Note: This option does not take into account the extra time required for color
printers.

Default: 0.

PS={({S|T},...)|NONE}
Function: Specifies the number and types of Programmed Symbols character
sets for a 3270 device that has extended function support.

Format: For the PS operand, you can code one of the following values:

S Specifies a single plane Programmed Symbols character set.

T Specifies a triple plane Programmed Symbols character set.

NONE
Specifies that no Programmed Symbols character sets will be defined.

If you specify DBCS=NO, you can code up to six occurrences of the letters S
and T with the letters separated by commas and the entire operand value
enclosed in parentheses. If you specify DBCS=YES, you can code up to five

Chapter 6. Defining VTAMAPPL simulation statements 81

occurrences of the letters S and T with the letters separated by commas and
the entire operand value enclosed in parentheses. For example: PS=(S,S,T,T,S,T)
is coded for a 3279-S3G.

Default: NONE

QUIESCE={YES|NO}
Function: Specifies that the device will be automatically marked quiesced
during network initialization. No messages will be generated for that device
until it is released by an operator command or logic test.

Format: YES or NO.

Default: NO

Note: If you do not want the statements to be executed when the first deck
enters message generation, put a STOP statement in the first deck entered to
get the start-up delay.

RESOURCE=name
Function: Specifies the SNA network name of the logical unit with which a
session will be initiated or terminated. If you code the RESOURCE operand for
this device, WSim will automatically send the INITIATE-SELF command.
When the session is terminated, it will again send the INITIATE-SELF
command.

Note: For secondary LU half-sessions, if RESOURCE and INIT=SEC are coded,
WSim will automatically send the INITIATE-SELF command. When the session
is terminated, it will again send the INITIATE-SELF command.

For primary LU half-sessions, if RESOURCE and INIT=PRI are coded, WSim
will automatically send the INITIATE-SELF command. When the session is
terminated, it will again send the INITIATE-SELF command.

The RESOURCE operand will be ignored for all other non-initiating LU
half-sessions, that is, secondary half-session with INIT=PRI or primary
half-session with INIT=SEC.

You can use the CMND COMMAND=INIT instead of RESOURCE if only one
pass through the decks is required or to control when the INITIATE-SELF
command should be sent. To use the CMND statement to send the
INITIATE-SELF command, do not code the RESOURCE operand and make
sure that the CMND statement is the first statement in the first deck
referenced. Do not code both the RESOURCE statement and the CMND
statement or duplicate INIT-SELFs will be generated. Refer to , SC31-8945 for
more information on initiating sessions.

Format: A 1- to 8-character name that conforms to SNA network name
specifications.

Default: None.

RSTATS={YES|NO}
Function: Specifies whether or not online response time statistics will be
accumulated for this device and reported when the RSTATS (W) operator
command is issued for the device.

Format: For the RSTATS operand, you can code one of the following values:

YES Specifies that online response statistics will be accumulated and
reported when the RSTATS (W) operator command is issued for the
device.

82 WSim Script Guide and Reference

NO Specifies that no online response statistics will be kept for this device,
and no report will be displayed for the device when the RSTATS (W)
operator command is issued.

Note: If RSTATS=NO is specified in the network definition, you cannot
start it at a later time (with the Alter (A) operator command) because
of the storage allocation necessary at initialization time.

Default: NO

RTR={YES|NO}
Function: Specifies whether or not the SNA command Ready-to-Receive will be
sent by a secondary logical unit in a bracket contention situation.

Format: For the RTR operand, you can code one of the following values:

YES Specifies that the RTR will be sent.

NO Specifies that the RTR will not be sent.

Default: NO

SAVEAREA=(num,size)
Function: Specifies the number and size of the static save areas to be
pre-allocated for input data save and recall.

Format: For the SAVEAREA operand, you can code the following values:

num Specifies the number of save areas to be allocated for this device,
where num is an integer from 1 to 4095.

size Specifies the size for each save area in bytes, where size is an integer
from 1 to 32767.

Default: None. This operand is not required. Save areas not defined by this
operand will be allocated dynamically for this device.

SEQ={integer|0}
Function: Specifies the initial value for the device sequence counter at network
initialization or after a network reset.

Format: An integer from 0 to 2147483647.

Default: 0

STLTRACE={YES|NO}
Function: Specifies whether STL trace records for this resource should be
written to the log data set.

Format: YES or NO.

Default: NO

THKTIME={IMMED|UNLOCK}
Function: Specifies when the message delay is to be started. The delay will be
started after all SNA responses have been received, all WAIT conditions have
been satisfied, and a keyboard restore message has been received for a display.

Format: For the THKTIME operand, you can code one of the following values:

IMMED
Specifies that the calculated delay for the next message starts
immediately after the current message has been generated by WSim.

Chapter 6. Defining VTAMAPPL simulation statements 83

UNLOCK
Specifies that calculation of the delay for the next message starts when
WSim is able to generate another message.

Note: For non-display logical units running in exception response only mode
and not setting the WAIT indicator, use of the UNLOCK option will cause
messages to be sent from WSim with no intermessage delays.

Exception
Response Only

Unlock
Applicable

Yes No
No Yes

Default: IMMED

THROTTLE={n|1}
Function: Specifies the number of messages that this LU or DEV can have
outstanding (waiting to be transmitted or being transmitted) at any one time.

Format: An integer between 1 and 255.

Default: 1

UASIZE=(w,h)
Function: Specifies the size of the display screen in PELs (picture elements).

Format: 2 numbers between 1 and 999 specifying the width (w) and height (h)
of the screen in PELs.

Default: None. This operand is required if CCSIZE=(0,0) is specified. It will be
ignored if CCSIZE=(x,y) is specified.

UOM={INCH|MM}
Function: Specifies the unit of measurement for the distance between PELs
(picture elements) on the screen of a display.

Format: For the UOM operand, you can code one of the following values:

INCH Specifies that the distance is to be measured in inches.

MM Specifies that the distance is to be measured in millimeters.

Default: INCH

USERAREA={integer|0}
Function: Defines an area of storage for this device to be used for a scratch
pad or user exit workarea.

Format: An integer from 0 to 32767.

Note: If integer is not a multiple of eight bytes, this value is rounded up to the
next multiple of eight bytes.

Default: 0

84 WSim Script Guide and Reference

VTAMAPPL - VTAMAPPL statement

[name] VTAMAPPL [BUFSIZE={integer|265}]
[,MLEN=integer]
[,MLOG={YES|NO}]

VTAMAPPL Operands
[,APPLID=name]
[,PASSWD=password]

Function

The VTAMAPPL statement defines the VTAM application program symbolic name
and the password associated with the VTAM application program symbolic name.
The VTAMAPPL statement is the first statement in the definition of a
WSim/VTAM application program interface.

See Table 6 on page 71 for operands that can be coded on this statement to provide
defaults for lower-level statements and where these operands are defined.

Where

name
Function: Specifies the symbolic name used to identify the WSim/VTAM
application.

Format: From one to eight alphanumeric characters.

Default: APPLID operand value.

APPLID=name
Function: Specifies the VTAM application program symbolic name. This name
must match an entry in VTAM's configuration tables (VTAMLST) created using
a VTAM APPL definition statement. The name specified is the name of the
APPL statement or ACBNAME operand value coded on an APPL statement.

Format: From one to eight alphanumeric characters.

Default: The VTAMAPPL name field value.

Note: You must code either the VTAMAPPL name field or APPLID operand
value.

BUFSIZE={integer|265}
Function: Specifies the size of the buffer in which messages will be built for
and received by the LUs associated with this application program.

Format: An integer from 100 to 32767. If integer is less than 265, BUFSIZE=265
is used.

Note: This value should be at least as great as the length of the longest PIU
(RU plus the length of the SNA FID 2 transmission header (TH) and request
header (RH)) that can be generated or received by this application. Any
received message longer than the value of the BUFSIZE operand will be
truncated.

Default: 265

Chapter 6. Defining VTAMAPPL simulation statements 85

MLEN=integer
Function: Specifies the maximum number of data characters to be written to
the log data set for each data transfer.

Format: An integer from 100 to 32767.

Note: If this value is larger than the data transferred, the entire transmission is
logged. If the specification is smaller than the amount of data transferred, only
the specified length is logged.

Default: If you omit this operand, the entire transmission will be logged.

MLOG={YES|NO}
Function: Specifies whether or not this VTAMAPPL will use the message
logging function.

Format: YES or NO.

Default: YES

PASSWD=password
Function: Specifies the password associated with the VTAM application
program symbolic name. This password must match the PRTCT operand value
coded on the corresponding APPL statement in the VTAMLST.

Format: From one to eight alphanumeric characters.

Default: APPLID operand value.

86 WSim Script Guide and Reference

Chapter 7. Defining TCP/IP client simulation statements

This chapter describes TCP/IP network configuration definition statements.
TCP/IP networks may include simulated Telnet 3270, 3270E, 5250, or NVT clients,
simulated File Transfer Protocol (FTP) clients, simulated Simple TCP or UDP
clients, or any combination of these clients.

These statements are listed in alphabetical order. For more information about what
order you need to code these statements, see Table 3 on page 13. For FTP
simulation, see also the FILE statement in Chapter 4, “Defining general simulation
statements,” on page 23.

When you code the network configuration definition statements, you can code the
common operands for the network resources at the highest level statements and
override them on lower level statements, if necessary.

Operands on the DEV statement are grouped according to function and appear
under group headings. You should use an operand within a group when you
define resources that belong to that group.

Note: You can select operands from more than one functional group to define a
particular resource.

Summary of operands
Table 7 lists the operands you can use in a TCP/IP simulation, where these
operands are defined, and where these operands can be coded.

Table 7. TCP/IP simulation operands

Operand Appears on Can also be coded on

ALTCSET DEV NTWRK, TCPIP

APLCSID DEV NTWRK, TCPIP

ASSOC DEV TCPIP

ATRABORT DEV NTWRK, TCPIP

ATRDECK DEV NTWRK, TCPIP

BASECSID DEV NTWRK, TCPIP

BUFSIZE TCPIP NTWRK

CCSIZE DEV NTWRK, TCPIP

COLOR DEV NTWRK, TCPIP

CRDATALN DEV NTWRK, TCPIP

DBCS DEV NTWRK, TCPIP

DBCSCSID DEV NTWRK, TCPIP

DELAY DEV NTWRK, TCPIP

DISPLAY DEV NTWRK, TCPIP

EXTFUN DEV NTWRK, TCPIP

FLDOUTLN DEV NTWRK, TCPIP

FLDVALID DEV NTWRK, TCPIP

© Copyright IBM Corp. 1983, 2015 87

Table 7. TCP/IP simulation operands (continued)

Operand Appears on Can also be coded on

FRSTTXT DEV NTWRK, TCPIP

FTPPORT TCPIP NTWRK

FUNCTS DEV TCPIP

HIGHLITE DEV NTWRK, TCPIP

IUTI DEV NTWRK, TCPIP

LOCLPORT DEV -

LOGDSPLY DEV NTWRK, TCPIP

MAXCALL DEV NTWRK, TCPIP

MAXNOPTN DEV NTWRK, TCPIP

MAXPTNSZ DEV NTWRK, TCPIP

MLEN TCPIP NTWRK

MLOG TCPIP NTWRK

MSGTRACE DEV NTWRK, TCPIP

PATH DEV NTWRK, TCPIP

PORT DEV -

PROTMSG DEV NTWRK, TCPIP

PS DEV NTWRK, TCPIP

QUIESCE DEV NTWRK, TCPIP

RESOURCE DEV TCPIP

RSTATS DEV NTWRK, TCPIP

SAVEAREA DEV NTWRK, TCPIP

SEQ DEV NTWRK, TCPIP

SERVADDR DEV NTWRK, TCPIP

STCPHCLR DEV NTWRK, TCPIP

STCPHCLX DEV NTWRK, TCPIP

STCPPORT TCPIP NTWRK

STCPROLE DEV -

STLTRACE DEV NTWRK, TCPIP

SUDPPORT TCPIP NTWRK

TCPNAME TCPIP NTWRK

THKTIME DEV NTWRK, TCPIP

TNPORT TCPIP NTWRK

TYPE DEV TCPIP

UASIZE DEV NTWRK, TCPIP

UOM DEV NTWRK, TCPIP

USERAREA DEV NTWRK, TCPIP

88 WSim Script Guide and Reference

DEV - TCP/IP device definition statement

[name] DEV [ASSOC={YES|NO}]
[,ATRABORT={DECK|PATH|NONE}]
[,ATRDECK=rname]
[,CRDATALN={integer|20}]
[,DELAY={A(integer)}

{F(integer)}
{R(integer1[,integer2])}
{T(integer)}
{F(1)}]

[,FRSTTXT=deck]
[,FUNCTS=(integer,...)]
[,IUTI=uti]
[,MAXCALL={integer|5}]
[,LOCLPORT=integer]
[,MSGTRACE={YES|NO}]
[,PATH=(name{*integer,...)]
[,PORT=integer]
[,PRTSPD=integer]
[,QUIESCE={YES|NO}]
[,RESOURCE=name]
[,RSTATS={YES|NO}]
[,SAVEAREA=(num,size)]
[,SEQ={integer|0}]
[,SERVADDR=addr]
[,STCPHCLR={YES|NO}]
[,STCPHCLX={YES|NO}]
[,STCPROLE={client|server}]
[,STLTRACE={YES|NO}]
[,THKTIME={IMMED|UNLOCK}]
[,TYPE={TN3270|FTP|STCP|SUDP|TN3270E|TN3270P|TN5250|TNNVT}]
[,USERAREA={integer|0}]

Display Simulation Operands
[,DISPLAY=(a,b[,c,d])]
[,LOGDSPLY={BEGIN|BOTH|END|NONE}]
[,PROTMSG={YES|NO}]

3270 Simulation Operands
[,ALTCSET={APL|NONE}]
[,APLCSID=(integer1,integer2|963,310)]
[,BASECSID=(integer1,integer2|697,37)]
[,CCSIZE=(x,y)]
[,COLOR={GREEN|MULTI|ORANGE}]
[,DBCS={YES|NO}]
[,DBCSCSID=(integer1,integer2|370,300)]
[,EXTFUN={YES|NO}]
[,FLDOUTLN={YES|NO}]
[,FLDVALID={YES|NO}]
[,HIGHLITE={YES|NO}]
[,MAXNOPTN={integer|0}]
[,MAXPTNSZ=integer]
[,PS={({S|T},...)|NONE}]
[,UASIZE=(w,h)]
[,UOM={INCH|MM}]

Function

The DEV statement specifies the simulated TCP/IP client. This statement overrides
the operand defaults specified on the TCPIP statement for this device only.

Chapter 7. Defining TCP/IP client simulation statements 89

111

Where

name
Function: Specifies the symbolic name used to reference the resource on
printed reports, with the data field options in the scripting statements, and
with operator commands.

Note: To avoid confusion when running WSim or the log data set analysis
programs, make sure that all resources in a network have unique names.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ASSOC={YES|NO}
Function: Specifies whether the ASSOCIATE command is to be used when
requesting a DEVICE-TYPE that represents a printer. Only valid when
TYPE=TN3270P.

Format: YES or NO.

Default: NO

ALTCSET={APL|NONE}
Function: Specifies whether the 3270 APL/TEXT character set is to be
supported.

Format: For the ALTCSET operand, you can code one of the following values:

APL Specifies that the 3270 APL/TEXT character set will be supported. The
APL/TEXT character set uses the graphic escape character (X'08')
followed by the character code point sequences.

NONE
Specifies that the 3270 APL/TEXT character set will not be supported.

Default: NONE

APLCSID=(integer1,integer2|963,310)
Function: Specifies the 3270 character set ID for the alternate APL character set
when you also specify ALTCSET=APL. integer1 specifies the character set
number. integer2 specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (963,310)

ATRABORT={DECK|PATH|NONE}
Function: Specifies whether the current message generation deck or current
path will be aborted when the device enters automatic terminal recovery.

Format: For the ATRABORT operand, you can code one of the following
values:

DECK Specifies that the current message generation path entry is to be
aborted upon entry to automatic terminal recovery.

PATH Specifies that the current path is to be aborted upon entry to automatic
terminal recovery.

NONE
Specifies that the current path entry is not to be aborted. Message
generation will automatically call the ATRDECK, if it exists, and then
return to the place in the message generation deck where the device
entered automatic terminal recovery.

90 WSim Script Guide and Reference

Note: If ATRABORT=NONE is specified and an ATRDECK exists,
there must be an available message generation deck call level in order
for the ATRDECK to be executed.

Default: DECK

ATRDECK=rname
Function: Specifies the name of a message generation deck to be invoked
automatically as the recovery message generation deck when automatic
terminal recovery is entered. Refer to , SC31-8945 for a discussion of automatic
terminal recovery.

Format: A 1- to 8-character name that conforms to standard JCL naming
conventions.

Default: None.

BASECSID=(integer1,integer2|697,37)
Function: Specifies the 3270 character set ID for the base character set. integer1
specifies the character set number. integer2 specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (697,37)

CCSIZE=(x,y)
Function: Specifies the display character cell size for a 3270 device that has
extended function support.

Format: For the CCSIZE operand, you can code the following values:

x Specifies the number of units in the width of the character, where x is
an integer from 0 to 255.

y Specifies the number of units in the height of the character, where y is
an integer from 0 to 255.

The width and height of a fixed character cell must be nonzero values. Variable
character cells must be defined as (0,0). CCSIZE=(x,0) or CCSIZE=(0,y) are not
valid combinations and will be flagged as errors.

When the character cell is defined as variable, the character cell size will be
determined by the device. UASIZE must be coded if CCSIZE=(0,0).

Default: The following default values are assumed if this operand is not
specified:

(9,16) For devices with display sizes of less than 3440 bytes

(9,12) For devices with display sizes of 3440 or more bytes

COLOR={GREEN|MULTI|ORANGE}
Function: Specifies whether seven color display or four color printer support
will be provided for a 3270 device that has extended function support.

Format: For the COLOR operand, you can code one of the following values:

GREEN
Specifies no color support, such as the 3278.

MULTI
Specifies multiple color support, such as a seven color display or four
color printer.

ORANGE
Specifies color support but displays only in orange.

Chapter 7. Defining TCP/IP client simulation statements 91

Default: GREEN

CRDATALN={integer|20}
Function: Specifies the length of the data to be reported in the Last Message
Transmitted and Last Message Received fields for an inactivity report, a
response to the Q (Query) operator command, or when the device is in console
recovery.

Format: An integer from 20 to 255.

Default: 20

DBCS={YES|NO}
Function: Specifies whether DBCS is supported for the simulated 3270 display.

Format: YES or NO.

Default: NO

Note: When you specify DBCS=YES, the following occurs:
v The DBCS-ASIA and character sets (with DBCS) query reply structure fields

are inserted into the 3270 query reply when it is generated.
v Partitioning and field validation are not supported.

DBCSCSID=(integer1,integer2|370,300)
Function: Specifies the 3270 character set ID for the DBCS character set when
you also code DBCS=YES. integer1 specifies the character set number. integer2
specifies the code page number.

Format: integer1 and integer2 must be in the range 0–65535.

Default: (370,300)

DELAY={A(integer)|F(integer)|R(integer1[,integer2])|T(integer)|F(1)}
Function: Specifies the value to be multiplied by the active UTI to define the
delay that will occur between the sending of messages.

Format: For the DELAY operand, you can code one of the following values:

A(integer)
Indicates the delay is to be chosen randomly from the range 0 to 2
times the integer, where integer is an integer from 0 to 1073741823. The
average delay will be integer.

F(integer)
Indicates the delay value is fixed at the value specified by the integer,
where integer is an integer from 0 to 2147483647.

R(integer)
Indicates that the delay is to be chosen randomly from the range
specified by an RN statement, where integer is an integer from 0 to 255
which corresponds to the name of the referenced RN statement.

R(integer1,integer2)
Indicates that the delay is to be chosen randomly in the range of low
(integer1) to high (integer2), where integer1 is an integer from 0 to
2147483646 and integer2 is an integer from 1 to 2147483647. The value
coded for integer1 must be less than the value coded for integer2.

T(integer)
Indicates that the delay is to be chosen randomly from the rate table
specified by a RATE statement, where integer specifies the name field
on a RATE statement and is an integer from 0 to 255.

92 WSim Script Guide and Reference

Notes:

v If you code only one integer for a value, the parentheses are optional. For
example, A(5) can also be A5.

v This operand sets the default delay value. Any DELAY statement coded in
the message generation deck overrides this value.

Default: F(1)

DISPLAY=(a,b[,c,d])
Function: Specifies the default and alternate screen sizes for displays. The
default size for 3270 devices will be set at start time and changed to the
alternate size when WSim receives an ERASE WRITE ALTERNATE command.

Format: Two or four numbers between 1 and 255 specifying the number of
rows and columns for the default and alternate screen sizes.

Default: (24,80,24,80)

Note: If you specify only a and b, c defaults to a, and d defaults to b.

EXTFUN={YES|NO}
Function: Specifies whether extended function support is to be provided for a
3270 device.

Format: For the EXTFUN operand, you can code one of the following values:

YES Specifies that extended function support will be provided to include
the following:
v The Write Structured Field command (WSF) will be accepted for a

read partition query structured field. A query response will be
generated to reflect the device resource.

v 12- or 14-bit buffer addresses will be accepted from the application.
14-bit addresses will be generated only if the current display buffer
size is greater than 4096 bytes.

v The display device can be defined with display sizes of up to 16384
bytes.

v The Data Analysis/APL character set will not be supported.

NO Specifies that no extended function support will be supplied. The
display device can have display sizes of up to 4096 bytes, and the Data
Analysis/APL character set will be supported.

Default: YES

Refer to , SC31-8945 for more information on defining 3270 device types and
the support options available.

FLDOUTLN={YES|NO}
Function: Specifies whether field outlining is supported for the simulated 3270
display.

Format: YES or NO.

Default: NO

Note: When you specify FLDOUTLN=YES, the Field Outlining query reply
structured field is inserted into the 3270 query reply when it is generated.

FLDVALID={YES|NO}
Function: Specifies whether field validation support is to be provided for an
8775 device that has extended function support.

Chapter 7. Defining TCP/IP client simulation statements 93

Format: YES or NO.

Default: NO

FRSTTXT=deck
Function: Defines the first message generation deck to be used when the
network is started.

Format: A 1- to 8-character name specifying one of the message generation
decks.

Default: None. If you omit this operand, the devices will begin with the first
deck specified on the PATH operand for the device. If no PATH operand is
coded or defaulted for this device, the first PATH in the network will be
chosen.

FUNCTS=(integer,...}
Function: Specifies the list of 3270 options supported for the specific
FUNCTIONS REQUEST command that the sender would like to see supported
on this session.

Format: Integers between 0 and 4 or a single integer value of 5.

0 Bind image, allows the server to send the SNA Bind image and Unbind
notification to the client.

1 Data stream control, for TYPE=TN3270P only. Allows the use of
standard 3270 data stream. This corresponds to LU type 3 SNA
sessions.

2 Responses, provides support for positive and negative response
handling. Allows the server to reflect to the client any and all definite,
exception, and no response requests sent by the host application.

3 SNA character stream control codes for printer sessions only. Allows
the use of the SNA Character Stream (SCS) and SCS control codes on
the session. SCS is used with LU type 1 SNA sessions.

Note: WSim can receive LU type 1 data but nothing is done except
logging and logic testing. There is no printer speed delay generated.
No module is called to check the data or set a delay.

4 Sysreq, allows the client and server to emulate some (or all, depending
on the server) of the functions of the SYSREQ key in an SNA
environment.

5 Null list, no options are supported.

Default: 0,1,2,3,4

HIGHLITE={YES|NO}
Function: Specifies whether highlighting support is to be provided for a 3270
that has extended function support.

Format: YES or NO.

Default: NO

IUTI=uti
Function: Specifies the name of a UTI which is used in calculating all delays
for this device, unless overridden by a message generation statement. uti must
reference a UTI statement defined within the network configuration statements.

Format: From one to eight alphanumeric characters.

94 WSim Script Guide and Reference

Default: None.

LOCLPORT=integer
Function: Specifies the local port number to be used by a Simple TCP or
Simple UDP device. When a local port number is specified for STCP or SUDP
devices, WSim will obtain the socket and BIND that socket to the specified
local port before any data is transmitted or received on that socket.

Format: An integer from 1 to 65535 representing the local port number to be
used.

Note: This operand can only be specified on a DEV statement associated with
a TCPIP statement.

Default: None. This field is optional.

LOGDSPLY={BEGIN|BOTH|END|NONE}
Function: Specifies whether 3270 display buffers are automatically written to
the log data set for formatting by the loglist program.

Format: For the LOGDSPLY operand, you can code one of the following
values:

BEGIN
Specifies that the display buffers are to be logged only at the beginning
of message generation.

BOTH Specifies that the display buffers are to be written to the log data set at
the beginning and end of message generation.

END Specifies that the display buffers are to be logged only at the end of
message generation.

NONE
Specifies that no display buffers are to be logged.

Default: NONE

MAXCALL={integer|5}
Function: Specifies the maximum number of outstanding message generation
deck calls for the device.

Format: An integer from 0 to 255.

Default: 5

MAXNOPTN={integer|0}
Function: Specifies the maximum number of display partitions that can be
defined concurrently for an LU2 device that has extended function support.

Format: An integer from 0 to 16.

Default: 0

MAXPTNSZ=integer
Function: Specifies the maximum size of a partition in bytes.

Note: This operand is valid only when the MAXNOPTN operand value is
greater than zero. Scrollable partitions support is assumed when the
MAXPTNSZ value is greater than the DISPLAY operand value.

Format: An integer from 1 to 32767.

Default: The number of bytes specified by the DISPLAY operand.

Chapter 7. Defining TCP/IP client simulation statements 95

MSGTRACE={YES|NO}
Function: Specifies whether message generation trace records for this resource
should be written to the log data set.

Format: YES or NO.

Default: NO

PATH=(name{*integer,...)
Function: Specifies the PATH statements for message generation deck selection
to be referenced by this device in controlling message generation.

Format: A list of alphanumeric names, optionally followed by an asterisk and
iteration count, separated by a comma, and enclosed in parentheses.

Default: None. If you omit this operand, the device will execute all PATH
statements in the order in which they are coded in the network configuration
definition.

Integer: Specifies the number of iterations to be run for the path that is
specified by name.

PORT=integer
Function: Specifies the TCP/IP port to be used when establishing a connection
for the protocol used by this simulated device.

Format: The decimal representation of the port.

Default: The well-known port for the protocol being simulated for Telnet 3270,
3270E, 5250, and NVT and for FTP, or 256 for STCP and SUDP.

Table 8. Defaults for PORT

Protocol (from TYPE=
operand)

TCPIP operand that supplies
default:

Default port (used if not
specified on TCPIP):

Telnet 3270, 3270E, 5250, or
NVT

TNPORT 23

FTP FTPPORT 21

STCP STCPPORT 256

SUDP SUDPPORT 256

Note: For FTP, both the port specified and the next lower numbered port are
normally used as part of the protocol.

PROTMSG={YES|NO}
Function: Specifies whether the field-protected message ITP403I is to be
written to the log data set.

Note: You can also use the INHBTMSG operand on the NTWRK statement to
inhibit the printing of this message.

Format: YES or NO.

Default: YES

PRTSPD=integer
Function: Specifies the speed at which the device being simulated will print
the data received. The device buffer is assumed to be busy for the time taken
to print the data. A TN3270E response will be sent after the data has been
printed.

96 WSim Script Guide and Reference

111

111
111

111
111

Format: An integer from 0 to 32767 that specifies the print speed for the device
in characters per second. PRTSPD=0 means "immediate completion of print
operation."

Note: This option is only valid for TYPE=TN3270P and LU3 printer types. This
option does not take into account the extra time required for color printers.

Default: 0

PS={({S|T},...)|NONE}
Function: Specifies the number and types of Programmed Symbols character
sets for a 3270 device that has extended function support.

Format: For the PS operand, you can code one of the following values:

S Specifies a single plane Programmed Symbols character set.

T Specifies a triple plane Programmed Symbol character set.

NONE
Specifies that no Programmed Symbol character sets will be defined.

If you specify DBCS=NO, you can code up to six occurrences of the letters S
and T with the letters separated by commas and the entire operand value
enclosed in parentheses. If you specify DBCS=YES, you can code up to five
occurrences of the letters S and T with the letters separated by commas and
the entire operand value enclosed in parentheses. For example: PS=(S,S,T,T,S,T),
is coded for a 3279-S3G.

Default: NONE

QUIESCE={YES|NO}
Function: Specifies that the device will be automatically marked quiesced
during network initialization. No messages will be generated for that device
until it is released by an operator command or logic test.

Format: YES or NO.

Default: NO

Note: If you do not want the statements to be executed when the first deck
enters message generation, put a STOP statement in the first deck entered to
get the start-up delay.

RESOURCE=name
Function: Specifies the TN3270E LU name to connect or associate with.

Format: A 1- to 8- character name.

Default: None.

RSTATS={YES|NO}
Function: Specifies whether or not online response time statistics will be
accumulated for this device, and reported when the W (RSTATS Query)
operator command is issued for the device.

Format: For the RSTATS operand, you can code one of the following values:

YES Specifies that online response statistics will be accumulated and
reported when the W (RSTATS Query) operator command is issued for
the device.

NO Specifies that no online response statistics will be kept for this device,

Chapter 7. Defining TCP/IP client simulation statements 97

and no report will be displayed for the device when the W (RSTATS
Query) operator command is issued.

Note: If RSTATS=NO is specified in the network definition, you cannot
start it at a later time (with the A (Alter) operator command) because
of the storage allocation necessary at initialization time.

Default: NO

SAVEAREA=(num,size)
Function: Specifies the number and size of the static save areas to be
pre-allocated for input data save and recall.

Format: For the SAVEAREA operand, you can code the following values:

num Specifies the number of save areas to be allocated for this device,
where num is an integer from 1 to 4095.

size Specifies the size for each save area in bytes, where size is an integer
from 1 to 32767.

Default: None. Save areas not defined by this operand will be allocated
dynamically for this device.

SEQ={integer|0}
Function: Specifies the initial value for the device sequence counter at network
initialization or after a network reset.

Format: An integer from 0 to 2147483647.

Default: 0

SERVADDR=addr
Function: Specifies the host address to which you want to connect in a TCP/IP
simulation.

Format: A value in IP dotted decimal address format. A dotted decimal address
is in the form xxx.xxx.xxx.xxx, where xxx is a number in the range 0 to 255.

Default: None. This operand is optional.

STCPHCLR={YES|NO}
Function: Specifies Half-Close Receive support for a TCP/IP STCP device.

Format: For the STCPHCLR operand, you can code one of the following
values:

YES Specifies a received zero-length null message will be interpreted as a
shutdown of the socket receive leg.

NO Specifies a received zero-length null message will be interpreted as a
close of the socket transmit and receive legs.

Default: NO

STCPHCLX={YES|NO}
Function: Specifies Half-Close Transmit support for a TCP/IP STCP device.

Format: For the STCPHCLX operand, you can code one of the following
values:

YES Specifies a transmitted zero-length null message will be translated into
a socket shutdown request to close only the socket transmit leg.

NO Specifies a transmitted zero-length null message will be translated into
a socket close request to close the socket transmit and receive legs.

98 WSim Script Guide and Reference

Default: NO

STCPROLE={CLIENT|SERVER}
Function: Specifies whether the device is to act as a client or server.

Format: CLIENT or SERVER

Default: CLIENT

Note: This operand can only be specified on a DEV statement associated with
a TCPIP statement.

STLTRACE={YES|NO}
Function: Specifies whether STL trace records for this resource should be
written to the log data set.

Format: YES or NO.

Default: NO

THKTIME={IMMED|UNLOCK}
Function: Specifies when the message delay is to be started. The delay will be
started after all WAIT conditions have been satisfied and a keyboard restore
message has been received for a display device.

Format: For the THKTIME operand, you can code one of the following values:

IMMED
Specifies that the calculated delay for the next message starts
immediately after the current message has been generated by WSim.

UNLOCK
Specifies that calculation of the delay for the next message starts when
WSim is able to generate another message.

Default: IMMED

TYPE={TN3270|TN3270E|TN3270P|TNNVT|TN5250|FTP|STCP|SUDP}
Function: Specifies whether the device represents a Telnet 3270 or 3270E, Telnet
5250, Telnet line mode network virtual terminal, FTP, or STCP or SUDP client.

Format: For the TYPE operand, you can specify one of the following values:

TN3270
Specifies that this statement represents a Telnet 3270 client.

TN3270E
Specifies that this statement represents a Telnet 3270E terminal.

TN3270P
Specifies that this statement represents a Telnet 3270E printer.

TNNVT
Specifies that this statement represents a Telnet line mode network
virtual terminal client.

TN5250
Specifies that this statement represents a Telnet 5250 terminal.

FTP Specifies that this statement represents a File Transfer Protocol client.

STCP Specifies that this statement represents a Simple TCP client.

SUDP Specifies that this statement represents a Simple UDP client.

Default: TN3270

Chapter 7. Defining TCP/IP client simulation statements 99

UASIZE=(w,h)
Function: Specifies the size of the display screen in PELs (picture elements).

Format: 2 integers between 1 and 999 specifying the width (w) and height (h),
respectively, of the screen in PELs.

Default: None. This operand is required if CCSIZE=(0,0) is specified. It will be
ignored if CCSIZE=(x,y) is specified.

UOM={INCH|MM}
Function: Specifies the unit of measurement for the distance between PELs
(picture elements) on the screen of a display.

Format: For the UOM operand, you can code one of the following values:

INCH Specifies that the distance is to be measured in inches.

MM Specifies that the distance is to be measured in millimeters.

Default: INCH

USERAREA={integer|0}
Function: Defines an area of storage for this device to be used for a scratch
pad or user exit workarea.

Format: An integer from 0 to 32767.

Note: If integer is not a multiple of eight bytes, this value is rounded up to the
next multiple of eight bytes.

Default: 0

TCPIP - TCP/IP connection definition statement

[name] TCPIP [BUFSIZE={integer|2048}]
[,FTPPORT=integer]
[,MLEN=integer]
[,MLOG={YES|NO}]
[,STCPPORT=integer]
[,SUDPPORT=integer]
[,TCPNAME={name|TCPIP}]
[,TNPORT=integer]

Function

The TCPIP statement specifies the characteristics of a TCP/IP connection.
Operands specified on the TCPIP statement override the operand defaults specified
on the NTWRK statement.

See Table 7 on page 87 for operands that can be coded on this statement to provide
defaults for lower-level statements and where these operands are defined.

Where

name
Function: Specifies the symbolic name used to reference the resource on
printed reports, with the data field options in the scripting statements, and
with operator commands.

100 WSim Script Guide and Reference

Note: To avoid confusion when running WSim or the log data set analysis
programs, all resources in a network should have unique names.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

BUFSIZE={integer|2048}
Function: BUFSIZE specifies the size of the buffer in which messages will be
built for and received by the devices following this TCPIP statement. Received
messages longer than this size will be divided by the TCP/IP product into
multiple segments, each received separately. Messages to be transmitted may
be truncated or broken into segments depending on the specific type of client
being simulated.
v Telnet 3270, 3270E, 5250, or NVT clients will split the data to be transmitted

into multiple segments of approximately the length specified by BUFSIZE.
v Commands generated by FTP clients are limited to 256 bytes regardless of

the BUFSIZE specification, but BUFSIZE is used to determine the size of
individual segments of file data transmitted and the size of received
segments on the FTP command connection. File data received on the FTP
data connection is always received in segments of a maximum size of 32000
bytes.

v STCP and SUDP clients will truncate messages to be transmitted at the size
specified by BUFSIZE and will receive data in segments no longer than the
size specified by BUFSIZE.

Format: An integer from 100 to 32767, although if integer is less than 2048,
BUFSIZE=2048 is used.

Default: 2048

FTPPORT=integer
Function: Specifies the default port number for FTP devices.

Note: Both the port specified and the next lower numbered port are normally
used as a part of the protocol.

Format: A decimal representation of the port to be used. The value can be in
the range from 1 to 65535.

Default: 21

MLEN=integer
Function: Specifies the maximum number of data characters to be written to
the log data set for each data transfer.

Format: An integer from 100 to 32767.

Note: If this value is larger than the data transferred, the entire transmission is
logged. If the specification is smaller than the amount of data transferred, only
the specified length is logged.

Default: If you omit this operand, the entire transmission will be logged.

MLOG={YES|NO}
Function: Specifies whether or not this device will use the message logging
function.

Format: YES or NO.

Default: YES

Chapter 7. Defining TCP/IP client simulation statements 101

STCPPORT=integer
Function: Specifies the default port number for Simple TCP clients.

Format: A decimal representation of the port to be used. The value can be in
the range from 1 to 65535.

Default: 256

SUDPPORT=integer
Function: Specifies the default port number for Simple UDP clients.

Format: A decimal representation of the port to be used. The value can be in
the range from 1 to 65535.

Default: 256

TCPNAME={name|TCPIP}
Function: Specifies the name of the TCP/IP virtual machine or address space
on the local host.

Format: From 1 to 8 alphanumeric characters.

Default: TCPIP

TNPORT=integer
Function: Specifies the default port number for Telnet 3270, 3270E, 5250, or
NVT devices.

Format: A decimal representation of the port to be used. The value can be in
the range from 1 to 65535.

Default: 23

102 WSim Script Guide and Reference

Chapter 8. Defining the message generation deck

This chapter describes the scripting language statements that define the data to be
entered at the simulated terminals and devices. It also describes other statements,
such as logic test statements, that allow you to control the order of message
generation.

Message generation statement categories
The message generation definition statements are divided into the following
categories:
v General definition statements
v Systems Network Architecture (SNA) simulation statements
v 3270 simulation statements
v 5250 simulation statements
v CPI-C simulation statements.

General definition statements
The following message generation statements are valid for all terminal types,
device types, and line disciplines:

BRANCH Provides internal branching

CALC Performs arithmetic operations during message generation

CALL Provides internal branching with return

CANCEL Cancels delayed event actions

DATASAVE Saves data from a terminal or device buffer

DEACT Deactivates message generation deck logic tests

DELAY Provides think time override capability

ENDTXT Defines the end of a message generation deck

EVENT Performs a post, reset, or signal action on an event

EXIT Defines a message generation deck user exit

IF1 Defines message generation deck logic tests

LABEL Provides user labels for branching

LOG Writes user information for message log data set

MSGTXT Defines the start of a message generation deck

ON Sets up an action to be taken when an event is signaled

OPCMND Issues operator commands

PUSH Places a string on a queue.

QUEUE Adds a string to a queue.

QUIESCE Stops message generation and quiesces the terminal

RETURN Provides return from called subroutines

SET Sets sequence counters

SETSW Sets or clears user switches

SETUTI Sets a new UTI to be active

© Copyright IBM Corp. 1983, 2015 103

STOP Acts as a delimiter without setting the wait indicator

TEXT1 Defines data being entered at the terminals

WAIT Forces devices to wait for response messages

WTO Writes user information to system console.

WTOABRHD Writes user information to the system console with abbreviated headers.

Note:

1. For CPI-C simulations, WSim ignores TEXT statements and IF statements that
have WHEN=IN or WHEN=OUT specified.

SNA simulation statements
The following statements are valid for SNA terminals, including 3270 SNA, but
these statements are ignored for any non-SNA terminals or CPI-C simulations:

CMND Sends SNA commands

RESP Overrides normal SNA responses

RH Overrides normal request and response headers

SYSREQ Provides SYSREQ key functions

TH Overrides normal transmission headers.

3270 simulation statements
The following statements are valid for 3270 terminals, but primary logical units
will ignore these statements:

BTAB Simulates the Back Tab key

CHARSET Selects the device character set

CLEAR Clears the device buffer to nulls

CLEARPTN Clears the active partition

COLOR Selects the display color option

CTAB Simulates the conditional Tab function

CURSOR Positions the cursor

CURSRSEL Simulates the Cursor Select key

DELETE Simulates the Delete key

DUP Duplicates characters

ENTER Simulates the Enter key

EREOF Simulates the Erase to the End Of Field key

ERIN Simulates the Erase Input key

ERROR Provides terminal error simulation

FM Simulates the Field Mark key

HIGHLITE Selects the display highlighting option

HOME Simulates the Home key

INSERT Simulates the Insert key

JUMP Defines the next partition as the active partition

LCLEAR Clears the device buffer to nulls

104 WSim Script Guide and Reference

MONITOR Displays the simulated 3270 display image being monitored by the
display monitor facility (DMF)

NL Simulates the New Line key

PAn Simulates the Program Access keys one through three (PA1 - PA3)

PFn Simulates the Program Function keys 1 through 24 (PF1 - PF24)

RESET Simulates the Reset key

SCROLL Scrolls the partition data within the window/viewport

SELECT Simulates the Selector pen

STRIPE Provides magnetic stripe input

TAB Simulates the Tab key.

5250 simulation statements
The following statements are valid for 5250 terminals, but primary logical units
will ignore these statements:

CLEAR Clears the device buffer to nulls

CMDn Simulates the Program Function keys 1 through 24 (PF1 - PF24)

CURSOR Positions cursor

DUP Duplicates characters

ENTER Simulates the Enter key

ERIN Simulates the Erase Input key

FLDADV Simulates the Field Advance key

FLDBKSP Simulates the Field Backspace key

FLDMINUS Simulates the Field Minus key

FLDPLUS Simulates the Field Plus key

HELP Simulates the Help key

HOME Simulates the Home key

NL Simulates the New Line key

PRINT Simulates the Print Request key

ROLLDOWN Simulates the Roll Down key

ROLLUP Simulates the Roll Up key

SELECT Simulates the Selector pen.

CPI-C simulation statements
The following statement group is valid for Common Programming Interface
Communications (CPI-C) transaction programs.

CMxxxx
Simulates CPI-C calls.

"CMxxxx" is a generalized notation used to indicate a category of statements that
simulate CPI-C calls. The name of the statement begins with "CM" and is followed
by two to four characters to give the four- to six-character name of the statement.
Table 9 on page 120 names the statements that are used to simulate CPI-C calls.

Chapter 8. Defining the message generation deck 105

Message generation statement descriptions
The remainder of this chapter describes the message generation deck statements.

BRANCH - branch statement

[name] BRANCH [LABEL=name]
[,NAME=name]

Function

The BRANCH statement unconditionally changes the course of message generation
by specifying a message generation deck name and a statement name to be
executed next. This statement does not provide a way to return the message
generation course to the statement where the branch took place.

When using the BRANCH statement, you must code either the NAME or the
LABEL operand. However, you can also code both operands.

Where

name
Function: Specifies a name used when branching during message generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

LABEL=name
Function: Specifies the name of a statement within a message generation deck
to which the branch is to be taken.

Format: From one to eight alphanumeric characters.

Default: If omitted, the branch is assumed to be for the beginning of the
message generation deck specified by the NAME operand.

NAME=name
Function: Specifies the name of the message generation deck to which the
branch is to be taken.

Format: From one to eight alphanumeric characters.

Default: If omitted, the name coded for LABEL is assumed to exist within the
current message generation deck.

BTAB - back tab key statement

[name] BTAB

Function

The BTAB statement simulates the Back Tab key on a display device. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

106 WSim Script Guide and Reference

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CALC - calculate statement

[name] CALC LOC=location
,VALUE=[±]integer
[,LENG=integer]

Function

The CALC statement sets, adds to, or subtracts from a value at a specific location
in a save area or user area. You can use the CALC statement only on data in
hexadecimal EBCDIC format.

Note: If you subtract a larger number from a smaller number, the result is always
zero.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

LOC=location
Function: Specifies the starting location where the arithmetic operation is to be
performed.

Format: For the LOC operand, you can code one of the following options. value
can be any integer from 0 to 32766 or a counter specification whose value is
within this range. Zero is the offset to the first byte of the field for the positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

N±value
Perform the arithmetic operation at an offset from the start(+value) or
back from the end(-value) of the network user area.

U±value
Perform the arithmetic operation at an offset from the start(+value) or
back from the end(-value) of the device user area.

Ns+value
Perform the arithmetic operation at an offset from the start of the
network save area where s is the network save area and can be any
integer from 1 to 4095.

Chapter 8. Defining the message generation deck 107

s+value
Perform the arithmetic operation at an offset from the start of the
device save area where s is the device save area and can be any integer
from 1 to 4095.

Note: If you code Ns+value or s+value, make sure that you have previously
placed data in the save area at that offset.

Default: None. This operand is required.

VALUE=[±]integer
Function: Specifies the value to be set, added, or subtracted.

Format: For the VALUE operand, you can code one of the following values:

integer Indicates that the value is to be set at the location specified by the LOC
operand, where integer is a number from 0 to 999999999.

±integer
Indicates that the value is to be added to or subtracted from the
location specified by the LOC operand, where integer is a number from
0 to 999999999.

Default: None. This operand is required.

LENG=integer
Function: Specifies the amount of data to be used in the arithmetic operation
in bytes.

Format: An integer from one to nine.

Default: Length of the integer specified by the VALUE operand.

CALL - call subroutine statement

[name] CALL [LABEL=name]
[,NAME=name]

Function

The CALL statement unconditionally alters the course of message generation by
specifying a message generation deck name and a label name to be executed next.
Unlike the BRANCH statement, however, the CALL statement returns control to
the point of the call when a RETURN or ENDTXT statement is processed.

When using the CALL statement, you must code either the NAME or the LABEL
operands. However, you can also code both operands.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

108 WSim Script Guide and Reference

LABEL=name
Function: Specifies the name of a statement within a message generation deck
to which the branch is to be taken.

Format: From one to eight alphanumeric characters.

Default: If omitted, the call is assumed to be for the beginning of the message
generation deck specified by the NAME operand.

NAME=name
Function: Specifies the name of the message generation deck being called.

Format: From one to eight alphanumeric characters.

Default: If omitted, the name coded for LABEL is assumed to exist within the
current message generation deck.

CANCEL - cancel event statement

[name] CANCEL EVENTTAG=tag

Function

The CANCEL statement cancels one or more event actions associated with an
outstanding timer previously specified by the same simulated resource via
execution of an “EVENT with TIME=” statement.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

EVENTTAG=tag
Function: Specifies the tag value assigned to one or more EVENT statements
with the TIME= operand coded.

Format: From one to eight alphanumeric characters.

Default: None. This field is required.

CHARSET - character set select statement

[name] CHARSET {APL|FIELD|PSA|PSB|PSC|PSD|PSE|PSF|PSNAME=byte}

Function

The CHARSET statement simulates the action of a 3270 terminal key, which selects
the character set for subsequent data input. This statement is valid for 3270
simulation.

Chapter 8. Defining the message generation deck 109

If you do not use the CHARSET statement, the character set will be determined by
the extended field attribute byte value. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

{APL|FIELD|PSA|PSB|PSC|PSD|PSE|PSF|PSNAME=byte}
Function: Specifies the character set to be used for subsequent data input from
this terminal.

Format: For the CHARSET statement you can code one of the following
operands:

APL Selects the special APL/Text character set for APL characters, which
must be sent using the two-character graphic escape sequence.

FIELD Specifies that the character set is determined by the extended field
attribute byte. Use the FIELD operand to return to the standard
EBCDIC character set after an APL selection.

PSA Selects the first Programmed Symbol (PS) character set defined for the
device.

PSB Selects the second PS defined for the device.

PSC Selects the third PS defined for the device.

PSD Selects the fourth PS defined for the device.

PSE Selects the fifth PS defined for the device.

PSF Selects the sixth PS defined for the device.

PSNAME=byte
Selects the Programmed Symbols character set named by the value for
byte, where byte is either one EBCDIC character or two hexadecimal
digits that have a value between X'40' and X'EF'.

Default: FIELD

CLEAR - clear key statement

[name] CLEAR

Function

The CLEAR statement simulates the Clear key on a display device. This statement
is valid for 3270 and 5250 simulation. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

110 WSim Script Guide and Reference

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CLEARPTN - clear partition key statement

[name] CLEARPTN

Function

The CLEARPTN statement simulates the Clear Partition key on a 3270 display
terminal. This statement is valid for 3270 simulation. This statement is a delimiter
in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CMD - program function key statement

[name] CMDn

Function

The CMD statement simulates one of the 24 Program Function keys for a 5250
display device. This statement is valid only for 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CMDn
Function: Specifies the Program Function key to simulate.

Format: A 1- or 2-digit number between 1 and 24.

Default: None. You must specify n.

Chapter 8. Defining the message generation deck 111

CMND - SNA command statement

[name] CMND [COMMAND=cmnd]
[,DATA=(data...)]
[,LOG={byte|Ns+value|s+value|N±value|U±value|00}]
[,MODE=name]
[,PSEQACT={IGNORE|SET|TEST|TESTSET}]
[,PSEQVAL={integer|0}]
[,RESOURCE=name]
[,RESP=(data...)]
[,SENSE={sense|’00000000’}]
[,SON={son|’00’}]
[,SSEQACT={IGNORE|SET|TEST|TESTSET}]
[,SSEQVAL={integer|0}]

Function

The CMND statement builds an SNA command to be sent by the simulated logical
unit and sets the SNA headers in the message to indicate the presence of the
command. You can also define your own command or data to be sent with the
command. The SNA statement is valid only for SNA simulation and is ignored for
CPI-C transaction programs.

You can use the CMND statement to initiate a session from a logon deck, for a
secondary LU when INIT=SEC is coded but RESOURCE is not coded on the DEV
or LU statement, or for a primary LU when INIT=PRI is coded but RESOURCE is
not coded on the LU statement. In the case where a terminal logs off and then
enters message generation to logon again, the CMND statement must be the first
statement in that message generation deck.

Note: To use the CMND statement, you must code either the COMMAND or
DATA operand. However, you can code both operands. This statement is a
conditional delimiter.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

COMMAND=cmnd
Function: Specifies the command that is to be simulated.

Format: For the COMMAND operand, you can code one of the following
values:

SHUTD Shutdown

SIGNAL Signal

STSN Set and test sequence numbers

TERM Terminate self, format 0

UNBIND Unbind session.

BID Bid

112 WSim Script Guide and Reference

BIS Bracket initiation stopped

CANCEL Cancel chain

CHASE Chase responses

CLEAR Clear

INIT Initiate self, format 0

LUSTAT LU status

QUEC Quiesce at end of chain

RELQ Release quiesce

RSHUTD Request shutdown

RTR Ready to receive

SBI Stop bracket initiation

SDT Start data traffic

The following chart shows the valid operands that you can code with the
command options listed. The COMMAND options that are not listed below
can only be coded singularly on the CMND statement.

Option Valid Associated Operands

INIT DATA, LOG, MODE, RESOURCE, RESP

TERM LOG, RESOURCE, RESP

STSN LOG, PSEQACT, PSEQVAL, RESP, SSEQACT, SSEQVAL

LUSTAT LOG, RESP, SENSE

SIGNAL LOG, RESP, SENSE

UNBIND SENSE, SON

Default: None. This operand is optional.

Note: You must code either the COMMAND or DATA operand. You can code
both the COMMAND and DATA operands only for the INIT command. Do not
code both the RESOURCE statement and the CMND statement or duplicate
INIT-SELFs will be generated. VTAMAPPL LU simulations only support INIT
(initiate-self, format 0).

DATA=(data...)
Function: If you are simulating the INIT command, the DATA operand
specifies your own data to be sent with the command.

If you do not code the COMMAND operand, the DATA operand specifies your
own command. However, if you send an unsupported command, you must
also specify the entire request/response unit (RU). Use the TH and RH
statements to specify the SNA headers for the command.

Format: You can code any amount of data in this operand, but only a logical
maximum of 255 bytes will be sent. The data is enclosed by the text delimiting
characters specified on the MSGTXT statement. (The default is left and right
parentheses.) You can also continue this statement if the data will not fit on
one line. However, if a single text delimiting character is detected in column
71, it indicates the end of the operand, and any data after column 71 is
ignored.

You can also use the data field options (see Chapter 9, “Data field options,” on
page 199). Enter hexadecimal data enclosing the digits within single quotes. To

Chapter 8. Defining the message generation deck 113

enter a single quote, the special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, use two of the characters. If you enter
two text delimiting characters, they must be on the same statement (no
continuation between the characters).

For a logical unit defined as LU6.2 within VTAMAPPL, the DATA= operand
must be coded with user data along with COMMAND=INIT. The following is
an example of user data.
DATA=(’00’), Structured subfields follow

(’0902E2D5C1E2E5C3D4C7’), Mode Name
(’0403000001’), Session Instance Identifier
(’0C04D5C5E3C14BE4E2C5D9F0F1’) Network-Qualified PLU

The user data subfields are as follows:
v Length of mode name subfield is X'09'

– Mode name is SNASVCMG, X'E2D5C1E2E5C3D4C7'
v Length of Session Instance Identifier is X'04'

– Session Instance Identifier data is X'000001'
v Length of network-qualified subfield is X'0C'

– Network-Qualified PLU is NETA.USER01, X'D5C5E3C14BE4E2C5D9F0F1'.

Default: None. This operand is optional.

LOG={byte|Ns+value|s+value|N±value|U±value|00}
Function: Specifies a single byte of data to be included in the message log
header for this data transmission and for all records for this device until the
next CMND or TEXT statement without MORE=YES coded, is generated.

Format: For the LOG operand, you can enter one of the following options. The
value for value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. Zero is the offset to the first byte of the field.

byte One byte of data. If this byte is a single EBCDIC character, the EBCDIC
character is logged. If this byte is two hexadecimal digits, the two
digits are logged.

Ns+value
Specifies an offset into a network save area, where s is the number of
the network save area and is an integer from 1 to 4095.

s+value
Specifies an offset into a device save area, where s is the number of the
device save area and is an integer from 1 to 4095.

N±value
Specifies an offset into a network user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

U±value
Specifies an offset into a device user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

Note: If an area is specified and its length is longer than one byte, the first
byte is used. If the area contains no data or value specifies an offset that is
outside the area, X'00' is used for the log byte and an informational message is
logged.

Default: 00

114 WSim Script Guide and Reference

Note: The Loglist Utility will cause both representations (EBCDIC and
hexadecimal) of the log character to be printed on the formatted log report
under the heading User Data. The log byte is reset by the detection of a
CMND or TEXT statement during message generation.

MODE=name
Function: Specifies the logmode table entry to be used in constructing the
session BIND. This name is the same as the name specified by the LOGMODE
operand on a MODEENT statement.

Note: This operand is valid only with the INIT command.

Format: For the MODE operand, you can code the following options. The
value for value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. Zero is the offset to the first byte of the field
for positive offsets (+value) and the offset to the last byte of the field for
negative offsets (-value).

name Specifies the mode name to be used, where name is from one to eight
alphanumeric characters.

N±value
Specifies the mode name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the mode name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

Ns+value
Specifies the mode name to be referenced at an offset from the start of
the network save area, where s is the network save area and can be
any integer from 1 to 4095.

s+value
Specifies the mode name to be referenced at an offset from the start of
the device save area, where s is the device save area and can be any
integer from 1 to 4095.

Default: None. This operand is optional.

Note: You can use N±value, U±value, Ns+value, and s+value for variable mode
names. The first eight bytes of data beginning at the offset (value) comprise the
name. For the network and device user area, code the name and then pad it
with blanks if the length of the name is less than eight. If the area does not
exist or no data is present, the name will consist of eight blanks. Because no
validity checking is performed on the name, you can use a name that cannot
be expressed as EBCDIC characters. You can put the name to be referenced
into the save area or user area with a DATASAVE statement.

PSEQACT={IGNORE|SET|TEST|TESTSET}
Function: Specifies the action to be executed by the set-and-test-sequence-
number (STSN) receiver for the primary-to-secondary sequence number.

Note: This operand is valid only with the STSN command.

Format: For the PSEQACT operand, you can code one of the following
keywords:

IGNORE
Specifies that this STSN command is to be ignored.

Chapter 8. Defining the message generation deck 115

SET Specifies that the primary-to-secondary sequence number of the
secondary end user is to be set to the PSEQVAL operand value.

TEST Specifies that the secondary end user must return its
primary-to-secondary sequence number in the response RU.

TESTSET
Specifies that the primary-to-secondary sequence number of the control
program (CP) manager is to be set to the PSEQVAL operand value,
and the secondary end user is to compare that value against its own
and respond accordingly.

Default: SET

PSEQVAL={integer|0}
Function: Specifies the primary-to-secondary sequence number value to be sent
with the STSN.

Note: The operand is valid only with the STSN command.

Format: Any integer from 0 to 65535.

Default: 0

RESOURCE=name
Function: Specifies the SNA network name of the logical unit with which the
session is to be established or terminated.

Note: This operand is valid only with the INIT and TERM commands.

Format: For the RESOURCE operand, name must conform to SNA network
naming conventions. You can code one of the following options. The value for
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

name Specifies the resource name to be used, where name is from one to
eight alphanumeric characters.

N±value
Specifies the resource name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the resource name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

Ns+value
Specifies the resource name to be referenced from the start of the
network save area, where s is the network save area and can be any
integer from 1 to 4095.

s+value
Specifies the resource name to be referenced from the start of the
device save area, where s is the device save area and can be any
integer from 1 to 4095.

Default: The RESOURCE parameter specified on the NTWRK, DEV, or LU
statement.

Note: You can use N±value, U±value, Ns+value, and s+value for variable
resource names. The first eight bytes of data beginning at the offset (value)

116 WSim Script Guide and Reference

comprise the name. For the network and device user area, code the name and
then pad it with blanks if the length of the name is less than eight. If the area
does not exist or no data is present, the name will consist of eight blanks.
Because no validity checking is performed on the name, you can use a name
that cannot be expressed as EBCDIC characters. You can put the name to be
referenced into the save area or user area with a DATASAVE statement.

RESP=(data...)
Function: Specifies the text data to be used for comparison with a message
when an IF statement is encountered with the TEXT=RESP operand.

Format: At least one byte of data enclosed by the text delimiting character
specified on the MSGTXT statement. (The default is left and right parentheses.)
You can enter a maximum of 25 characters.

Note: You cannot continue the data enclosed in text delimiting characters. The
data field options explained in Chapter 9, “Data field options,” on page 199 are
not valid for this operand.

Enter hexadecimal data within the text delimiting characters by enclosing the
digits within single quotes. To enter a single quote, the special control
character (CONCHAR), or a text delimiting character (TXTDLM) as data, enter
two of the characters.

Default: None. This operand is optional.

SENSE={sense|'00000000'}
Function: Specifies the sense information to be sent with the command being
simulated.

Note: This operand is valid only for the LUSTAT, SIGNAL, and UNBIND
commands. Do not code this operand for any other commands.

Format: Eight hexadecimal digits enclosed within single quotes.

Default: '00000000'

SON={son|'00'}
Function: Specifies the session outage notification (SON) code to be sent with
the UNBIND command.

Note: This operand is valid only for the UNBIND command. Do not code this
operand for any other commands.

Format: Two hexadecimal digits enclosed within single quotes.

Default: '00'

SSEQACT={IGNORE|SET|TEST|TESTSET}
Function: Specifies the action to be executed by the STSN receiver for the
secondary-to-primary sequence number.

Note: This operand is valid only with the STSN command.

Format: For the SSEQACT operand, you can enter one of the following
keywords:

IGNORE
Specifies that this STSN command is to be ignored.

SET Specifies that the secondary-to-primary sequence number of the
secondary end user is to be set to the SSEQVAL operand value.

Chapter 8. Defining the message generation deck 117

TEST Specifies that the secondary end user must return its
secondary-to-primary sequence number in the response RU.

TESTSET
Specifies that the secondary-to-primary sequence number of the CP
manager is to be set to the SSEQVAL operand value, and the
secondary end user is to compare that value against its own and
respond accordingly.

Default: SET

SSEQVAL={integer|0}
Function: Specifies the secondary-to-primary sequence number value to be sent
with the STSN.

Note: The operand is valid only with the STSN command.

Format: Any integer from 0 to 65535.

Default: 0

CMxxxx - CPI-C simulation statement group

[name] CMxxxx (parameters)
[,LOG={byte|Ns+value|s+value|N±value|U±value|00}]

Function

“CMxxxx”is a generalized notation used to indicate a category of statements that
simulate CPI-C calls or a CPI-C extension call. The name of the statement begins
with “CM” and is followed by two to four characters to give the four- to
six-character name of the statement. Table 9 on page 120 names the statements that
are used to simulate CPI-C calls. These statements are valid only for CPI-C
simulations.

Note: While CPI-C simulation statements can be coded in the scripting language,
it is recommended that STL be used. In STL, the CPI-C parameters and values are
predefined STL variables, making the coding of CPI-C statements much easier. For
more information about individual CPI-C simulation statements, refer to Part 2,
“Guide to using STL and the STL Translator,” on page 219.

Some statements in this group are delimiters in some cases. For more information
about which statements can be delimiters, refer to the “Understanding Delimiters”
chapter of Creating WSim Scripts.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CMxxxx
Function: The name of the statement that simulates either a CPI-C Call or a
CPI-C extension call.

118 WSim Script Guide and Reference

Format: xxxx can be a two- to four-character identifier appended following
CM. Table 9 on page 120 shows the values that xxxx can have.

Default: None. You must specify xxxx.

parameters
Function: Specifies the parameter information that relates to the particular
statement. The parameters vary by statement.

Format: The input parameters that are character data must be specified as save
area references (network or device) using either a direct save area reference or
the RECALL data field option. The input parameters that are numeric data
must be specified as counter references (network, line, term, or device).

The output parameters must be specified as either device save area references
(for character data) or device counter references (for numeric data).

In the definitions below, n represents the save area or counter number.

CPI-C statements have the following form:

name CMxxxx({Sn|$recall,Sn$|n|$recall,n$}, (character input device save area)
{Nn|$recall,Nn$}, (character input network save area)
DCn, (numeric input device counter)
TCn, (numeric input term counter)
LCn, (numeric input line counter)
NCn, (numeric input network counter)
{Sn|n}, (character output)

.

.
DCn) (numeric output)

{[,LOG={byte|Ns+value|s+value|N±value|U±value|00}]}

If numeric input data needs to be unique for a specific instance of a transaction
program, a device counter must be used. If the data needs to be unique to a
specific transaction program, but may be shared across instances, a term
counter should be used. If the data needs to be unique to a specific LU, but
may be shared across transaction programs, a line counter should be used. If
the data may be shared across all LUs, use a network counter.

If character input data needs to be unique for a specific instance of a
transaction program, a device save area must be used. If the data may be
shared across transaction programs on all LUs, a network save area should be
used.

Figure 1 on page 124 gives an example of the use of save areas and counters to
specify CPI-C parameters.

Default: None.

LOG={byte|Ns+value|s+value|N±value|U±value|00}
Function: Specifies a single byte of data to be included in the message log
header for this CPI-C statement and for all records for this transaction program
until the next CPI-C statement is processed.

Format: For the LOG operand, you can enter one of the following options. The
value for value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. Zero is the offset to the first byte of the field.

byte One byte of data. If this byte is a single EBCDIC character, the EBCDIC
character is logged. If this byte is two hexadecimal digits, the two
digits are logged.

Chapter 8. Defining the message generation deck 119

Ns+value
Specifies an offset into a network save area, where s is the number of
the network save area and is an integer from 1 to 4095.

s+value
Specifies an offset into a device save area, where s is the number of the
device save area and is an integer from 1 to 4095.

N±value
Specifies an offset into a network user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

U±value
Specifies an offset into a device user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

Note: If an area is specified and its length is longer than one byte, the first
byte is used. If the area contains no data or value specifies an offset that is
outside the area, X'00' is used for the log byte and an informational message is
logged.

Default: 00

Note: The Loglist Utility will cause both representations (EBCDIC and
hexadecimal) of the log character to be printed on the formatted log report
under the heading User Data. The log byte is reset by the next CPI-C statement
during message generation.

Table 9 shows the relationship between the CPI-C calls and the corresponding
CPI-C simulation statements, and provides a prototype for the statements:

Table 9. Statement prototypes of CPI-C calls

CPI-C Call Statement Prototype

Accept_Conversation CMACCP (conversation_ID, return_code)

Allocate CMALLC (conversation_ID, return_code)

Confirm CMCFM
(conversation_id, request_to_send_received, return_code)

Confirmed CMCFMD (conversation_ID, return_code)

Deallocate CMDEAL (conversation_ID, return_code)

Extract_Conversation_State CMECS (conversation_ID, conversation_state, return_code)

Extract_Conversation_Type CMECT (conversation_ID, conversation_type, return_code)

Extract_Mode_Name CMEMN (conversation_ID, mode_name, mode_name_length, return_code)

Extract_Partner_LU_Name CMEPLN (conversation_ID, partner_LU_name, partner_LU_name_length,
return_code)

Extract_Sync_Level CMESL (conversation_ID, sync_level, return_code)

Flush CMFLUS (conversation_ID, return_code)

Initialize_Conversation CMINIT (conversation_ID, sym_dest_name, return_code)

Prepare_To_Receive CMPTR (conversation_ID, return_code)

Set_Fill CMSF (conversation_ID, fill, return_code)

Set_FM_Header_5_Extension CMSFM5
(conversation_ID, FMH5_extension, FMH5_extension_length, return_code)

120 WSim Script Guide and Reference

Table 9. Statement prototypes of CPI-C calls (continued)

CPI-C Call Statement Prototype

Set_Log_Data CMSLD (conversation_ID, log_data, log_data_length, return_code)

Set_Mode_Name CMSMN (conversation_ID, mode_name, mode_name_length, return_code)

Set_Partner_LU_Name CMSPLN (conversation_ID, partner_LU_ name, partner_LU_name_length,
return_code)

Set_Prepare_To_Receive_Type CMSPTR (conversation_ID, prepare_to_receive_type, return_code)

Set_Receive_Type CMSRT (conversation_ID, receive_type, return_code)

Receive CMRCV
(conversation_ID, receive_buffer, requested_length, data_received,
received_length,status_received, request_to_send_received, return_code)

Request_To_Send CMRTS (conversation_ID, return_code)

Send_Data CMSEND (conversation_ID, send_buffer, send_length, request_to_send_received,
return_code)

Send_Error CMSERR (conversation_ID, request_to_send_received, return_code)

Set_Conversation_Type CMSCT (conversation_ID, conversation_type, return_code)

Set_Deallocate_Type CMSDT (conversation_ID, deallocate_type, return_code)

Set_Error_Direction CMSED (conversation_ID, error_direction, return_code)

Set_Return_Control CMSRC (conversation_ID, return_control, return_code)

Set_Send_Type CMSST (conversation_ID, send_type, return_code)

Set_Sync_Level CMSSL (conversation_ID, sync_level, return_code)

Set_TP_Name CMSTPN (conversation_ID, TP_name, TP_name_length, return_code)

Test_Request_To_Send_Received CMTRTS (conversation_ID, request_to_send_received, return_code)

Following are definitions of the individual parameters of the statements:

conversation_ID
Specifies the identifier assigned to the conversation. When conversation_ID
is used in CMACCP or CMINIT, the format is character output. In all other
statements, the format is character input.

conversation_state
Specifies the conversation state that is returned to the local program. The
format is numeric output.

conversation_type
Specifies the type characteristic of the conversation. When used in CMECT,
the format is numeric output. When used in CMSCT, the format is numeric
input.

data_received
Specifies whether the program received data. The format is numeric
output.

deallocate_type
Specifies the type of deallocation to be performed. The format is numeric
input.

error_direction
Specifies the direction of data flow in which the program detected an error.
The format is numeric input.

Chapter 8. Defining the message generation deck 121

fill Specifies whether the program is to receive data in terms of the
logical-record format of the data or independent of the logical-record
format. The format is numeric input.

FMH5_extension
Specifies the information beyond the base FM Header type 5. The format is
character input.

FMH5_extension_length
Specifies the total length of the FMH-5 extension. The format is numeric
input.

log_data
Specifies the program-unique error information that is to be logged. The
format is character input.

log_data_length
Specifies the length of the program-unique error information. The format is
numeric input.

mode_name
Specifies the name of the mode that designates the properties of the
session to be allocated to the conversation. When used in CMEMN, the
format is character output. When used in CMSMN, the format is character
input.

mode_name_length
Specifies the length of the mode_name parameter. When used in CMEMN,
the format is numeric output. When used in CMSMN, the format is
numeric input.

partner_LU_name
Specifies the name of the logical unit where the remote program is located.
When used in CMEPLN, the format is character output. When used in
CMSPLN, the format is character input.

partner_LU_name_length
Specifies the length of the partner_LU_name parameter. When used in
CMEPLN, the format is numeric output. When used in CMSPLN, the
format is numeric input.

prepare_to_receive_type
Specifies the type of prepare-to-receive processing to be performed for this
conversation. The format is numeric input.

receive_buffer
Specifies the variable in which the program is to receive data. The format
is character output.

received_length
Specifies the variable containing the amount of data the program received.
The format is numeric output.

receive_type
Specifies the type of receive operation that is to be performed. The format
is numeric input.

requested_length
Specifies the maximum amount of data the program is to receive. The
format is numeric input.

122 WSim Script Guide and Reference

request_to_send_received
Specifies the variable containing an indication of whether or not a
request-to-send notification has been received. The format is numeric
output.

return_code
Specifies the result of the statement execution. The format is numeric
output.

return_control
Specifies when a program receives control back after issuing a CMALLC
statement. The format is numeric input.

send_buffer
Specifies the information to be sent to the conversation partner. The format
is character input.

send_length
Specifies the size of the send_buffer parameter and the number of bytes to
be sent on the conversation. The format is numeric input.

send_type
Specifies what, if any, information is to be sent in addition to any data
supplied on the CMSEND call, and whether the data is to be sent
immediately or buffered. The format is numeric input.

status_received
Specifies the variable containing an indication of the conversation status.
The format is numeric output.

sym_dest_name
Specifies the symbolic name which points to an entry in the side
information table. The format is character input.

sync_level
Specifies the synchronization level characteristic of the conversation. When
used in CMESL, the format is numeric output. When used in CMSSL, the
format is numeric input.

TP_name
Specifies the name of the remote program. The format is character input.

TP_name_length
Specifies the length of the TP_name parameter. The format is numeric
input.

Note: For detailed information regarding the CPI-C call definitions, refer to
v Part 2, “Guide to using STL and the STL Translator,” on page 219 for the

statement descriptions and general information relating to the statement
definitions

v Systems Application Architecture CPI Communications Reference

Figure 1 on page 124 is an example of the use of save areas and counters to specify
CPI-C parameters.

Chapter 8. Defining the message generation deck 123

COLOR - display color select statement

[name] COLOR {BLUE|FIELD|GREEN|PINK|RED|TURQUOISE|WHITE|YELLOW}

Function

The COLOR statement simulates the action of the 3270 device keys, which selects
the color for displaying subsequent data input. This statement is valid only for
3270 simulation.

If you do not code COLOR statement, the color will be selected by the extended
field attribute byte value. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

{BLUE|FIELD|GREEN|PINK|RED|TURQUOISE|WHITE|YELLOW}
Function: Specifies the color to be used for displaying subsequent data input
from this device.

* Device save area usage:
* 1=conversation id
* 2=destination name
* 3=send buffer
*
* Device counter usage:
* dc1=return code
* dc2=send length
* dc3=request-to-send received
*
* Set the symbolic destination name to "SERVER".

DATASAVE AREA=2,TEXT=(SERVER)
*
* Initialize a conversation with "SERVER".

CMINIT (1,2,DC1)
*
* Allocate the conversation with "SERVER".

CMALLC (1,DC1)
*
* Setup the send buffer and length.

DATASAVE AREA=3,TEXT=(DATA TO SEND)
SET DC2=LENG(3)

*
* Send the data to "SERVER".

CMSEND (1,3,DC2,DC3,DC1)
*
* Deallocate the conversation with "SERVER".

CMDEAL (1,DC1)

Figure 1. Use of save areas and counters to specify CPI-C parameters

124 WSim Script Guide and Reference

Format: BLUE, FIELD, GREEN, PINK, RED, TURQUOISE, WHITE, or
YELLOW.

Note: Use the FIELD operand to select the color defined by the extended field
attribute byte.

Default: FIELD

CTAB - conditional tab statement

[name] CTAB

Function

The CTAB statement conditionally tabs to the next field only if the cursor is not
currently at the beginning of a field. This statement is valid for 3270 simulation.
This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CURSOR - position cursor statement

[name] CURSOR [COLUMN={value|1}]
[,DOWN=value]
[,LEFT=value]
[,OFFSET=value]
[,RIGHT=value]
[,ROW={value|1}]
[,UP=value]

Function

The CURSOR statement simulates the action of the cursor positioning keys on the
display device. This statement is valid for 3270 and 5250 simulation. This statement
is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

COLUMN={value|1}
Function: Specifies the column position of the cursor setting.

Chapter 8. Defining the message generation deck 125

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: 1

Note: If you code the COLUMN operand, do not code the DOWN, LEFT,
OFFSET, RIGHT, and UP operands.

DOWN=value
Function: Specifies the number of positions down for the cursor.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: None.

Note: If you code the DOWN operand, do not code the COLUMN, LEFT,
OFFSET, RIGHT, ROW, and UP operands.

LEFT=value
Function: Specifies the number of positions to the left for the cursor.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: None.

Note: If you code the LEFT operand, do not code the COLUMN, DOWN,
OFFSET, RIGHT, ROW, and UP operands.

OFFSET=value
Function: Specifies the location at which the cursor will be positioned as an
offset from the beginning of the display buffer. For a 3270 with multiple
partitions defined, this operand specifies the cursor offset from the beginning
of the presentation space of the currently active partition.

Format: value can be an integer from 0 to 32766 or a counter specification
whose value is within this range.

Default: None.

Note: If you code the OFFSET operand, do not code the COLUMN, DOWN,
LEFT, RIGHT, ROW, and UP operands.

RIGHT=value
Function: Specifies the number of positions to the right for the cursor.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: None.

Note: If you code the RIGHT operand, do not code the COLUMN, DOWN,
LEFT, OFFSET, ROW, and UP operands.

ROW={value|1}
Function: Specifies the row position of the cursor setting.

Format: integer can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: 1

126 WSim Script Guide and Reference

Note: If you code the ROW operand, do not code the DOWN, LEFT, OFFSET,
RIGHT, and UP operands.

UP=value
Function: Specifies the number of positions up for the cursor.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: None.

Note: When multiple partitions are defined for a 3270, the ROW and
COLUMN specifications reference the display as you would see it, which could
include data from more than one partition. The partition owning the area of
the display to which the cursor was positioned with the ROW and COLUMN
specifications becomes the currently active partition.

CURSRSEL - cursor select key statement

Where

[name] CURSRSEL

Function

The CURSRSEL statement simulates the action of the Cursor Select key. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Chapter 8. Defining the message generation deck 127

DATASAVE - save data statement

[name] DATASAVE [AREA={s|Ns|N±value|U±value|1}]
[,CONVERT={YES|NO}]
[,COUNT=value]
[,FUNCTION={BITAND}

{BITOR}
{BITXOR}
{B2X}
{CENTER}
{COPIES}
{DELWORD}
{OVERLAY}
{REVERSE}
{SPACE}
{STRIP}
{STRIPL}
{STRIPT}
{SUBWORD}
{X2B}
{X2C}
{INSERT}
{DELETE}
{LEFT}
{RIGHT}
{DBCSADD}
{DBCSADJ}
{DBCSDEL}
{DBCS2SB}
{SB2DBCS}
{SB2MDBCS}
{TRANSLATE}]

[,INSERT=(data)]
[,LENG={value|100}]
[,LOC={B±value}

{C±value}
{D+value}
{TH+value}
{RH+value}
{RU+value}
{(row,col)}
{*}]

[,PAD={char|blank}]
[,PLENG=value]
[,POS=value]
[,TABLEI=data]
[,TABLEO=data]
[,TEXT=([data])]
[,TEXT2=([data])]

Function

The DATASAVE statement saves device buffer data or explicitly specified data into
a save area or user area. You can also use the DATASAVE statement to clear a
specified save area or user area.

Where

name
Function: Specifies a name to be used when branching during message
generation.

128 WSim Script Guide and Reference

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

AREA={s|Ns|N±value|U±value|1}
Function: Specifies whether one of the save areas or user areas is to be used to
save the data.

Format: For the AREA operand, you can enter one of the following options.
The value for value can be any integer from 0 to 32766 or a counter
specification whose value is within this range. Zero is the offset to the first
byte of the field for positive offsets (+value) and the offset to the last byte of
the field for negative offsets (-value).

s Specifies a device save area to be used to save the data, where s is an
integer from 1 to 4095.

Ns Specifies a network save area to be used to save the data, where s is an
integer from 1 to 4095.

N±value
Specifies a network user area to be used to save the data, where +value
is the offset from the start of the user area and -value is the offset back
from the end of the user area.

U±value
Specifies a device user area to be used to save the data, where +value is
the offset from the start of the user area and -value is the offset back
from the end of the user area.

Note: If value specifies an offset that is outside the user area, no data is
saved and an informational message is written to the log data set.

Default: 1, indicating device save area number 1.

CONVERT={YES|NO}
Function: Specifies that the data to be saved will be converted from a
hexadecimal format to a printable format before being placed in the save area
or user area.

Format: For the CONVERT operand, you can code one of the following values:

YES Specifies that each byte of data to be saved will be converted into two
bytes, which are the EBCDIC representations of each of the two
hexadecimal digits in the byte being saved. For example, the
hexadecimal character X'C1' would be converted to the hexadecimal
characters X'C3F1'.

Note: If CONVERT=YES is coded, the amount of space required in the
save area or user area will be twice the value specified by the LENG
operand.

NO Specifies that the data to be saved will not be converted.

Default: NO

COUNT=value
Function: When FUNCTION=COPIES is coded, value specifies the number of
copies to create.

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=COPIES is coded.

Chapter 8. Defining the message generation deck 129

Format: An integer from 1 to 32767 or a counter specification whose value is
within this range.

Default: None. This operand is required when FUNCTION=COPIES.

FUNCTION={BITAND}
{BITOR}

{BITXOR}

{B2X}

{CENTER}

{COPIES}

{DELWORD}

{OVERLAY}

{REVERSE}

{SPACE}

{STRIP}

{STRIPL}

{STRIPT}

{SUBWORD}

{X2B}

{X2C}

{INSERT}

{DELETE}

{LEFT}

{RIGHT}

{DBCSADD}

{DBCSADJ}

{DBCSDEL}

{DBCS2SB}

{SB2DBCS}

{SB2MDBCS}

{TRANSLATE}

Function: Specifies that a string manipulation function be performed on the
TEXT operand.

Note: This operand is only valid when the TEXT operand is coded.

Format: You can code one of the following values for the FUNCTION operand:

BITAND
Specifies that the data coded for the TEXT and TEXT2 operands will be
logically AND'ed together, bit by bit. If the PAD operand is specified,
the shorter text data of TEXT and TEXT2 will be extended with the
PAD character on the right before carrying out the logical operation.

130 WSim Script Guide and Reference

BITOR
Specifies that the data coded for the TEXT and TEXT2 operands will be
logically inclusive-OR'ed together, bit by bit. If the PAD operand is
specified, the shorter text data of TEXT and TEXT2 will be extended
with the PAD character on the right before carrying out the logical
operation.

BITXOR
Specifies that the data coded for the TEXT and TEXT2 operands will be
logically eXclusive-OR'ed together, bit by bit. If the PAD operand is
specified, the shorter text data of TEXT and TEXT2 will be extended
with the PAD character on the right before carrying out the logical
operation.

B2X Specifies that the data coded for the TEXT operand will be converted
to hexadecimal.

CENTER
Specifies that the data coded for the TEXT operand will be centered
with the PAD character around both ends until a length of PLENG is
reached.

COPIES
Specifies that the data coded for the TEXT operand will be copied and
concatenated by the number specified on the COUNT operand.

DELWORD
Specifies that the data coded for the TEXT operand will be deleted
starting at the word corresponding to the value coded on the POS
operand for a length of PLENG words.

OVERLAY
Specifies that the data coded for the INSERT operand is to be overlaid
on the data specified by the TEXT operand. If the PLENG operand is
also coded, the data specified by the INSERT operand is padded or
truncated to that length before it is overlaid on the TEXT data. If the
POS operand is also specified, the INSERT data is overlaid starting at
that position in the TEXT data. If the PAD operand is specified, the
specified PAD character is used, if necessary, to extend the TEXT or
INSERT data to meet the POS or PLENG specifications respectively.

REVERSE
Specifies that the data coded for the TEXT operand will be reversed.

SPACE iref refid=space02.
Specifies that the data coded for the TEXT operand will have a space
of length PLENG between each word. If the PAD operand is coded, the
PAD value is used instead of a space.

STRIP
Specifies that the data coded for the TEXT operand will have both
leading and trailing blanks removed. If the PAD operand is coded, the
PAD value will be used as the character to remove instead of blanks.

STRIPL
Specifies that the data coded for the TEXT operand will have leading
blanks removed. If the PAD operand is coded, the PAD value will be
used as the character to remove instead of blanks.

STRIPT
Specifies that the data coded for the TEXT operand will have trailing

Chapter 8. Defining the message generation deck 131

blanks removed. If the PAD operand is coded, the PAD value will be
used as the character to remove instead of blanks.

SUBWORD
Specifies that a substring of the data coded for the TEXT operand will
start at the nth word coded by the n value of the POS operand and up
to the PLENG value coded for the number of words. If the PLENG
value is not coded, the default will be the number of remaining words
in the data coded for the TEXT operand.

X2B Specifies that the data coded for the TEXT operand will be converted
to binary. Each hexadecimal character is converted to a string of four
binary digits. Blanks are ignored.

X2C Specifies that the data coded for the TEXT operand will be converted
to character. A leading 0 will be added if necessary to make an even
number of hexadecimal digits.

INSERT
Specifies that the data coded for the INSERT operand is to be inserted
into the data specified by the TEXT operand. If the PLENG operand is
also coded, the data specified by the INSERT operand is padded or
truncated to that length before it is inserted. If the POS operand is also
specified, the INSERT data is inserted after that position in the TEXT
data. If the PAD operand is specified, the INSERT data is padded with
the specified pad character.

DELETE
Specifies that a substring of the data coded for the TEXT operand is to
be deleted, starting at the position specified by the POS operand. If the
PLENG operand is also specified, its value is the number of characters
deleted.

LEFT Specifies that the data coded for the TEXT operand is to be padded or
truncated on the right to the length specified by the PLENG operand.
If the PAD operand is specified, the data is padded with the specified
pad character.

RIGHT
Specifies that the data coded for the TEXT operand is to be padded or
truncated on the left to the length specified by the PLENG operand. If
the PAD operand is specified, the data is padded with the specified
pad character.

DBCSADD
Adds SO/SI characters to the data coded for the TEXT operand and
saves the result in the user area or save area specified by the AREA
operand.

DBCSADJ
Deletes SI/SO character pairs from the data coded for the TEXT
operand and saves the result in the user area or save area specified by
the AREA operand.

DBCSDEL
Deletes SO/SI characters from the data coded for the TEXT operand
and saves the result in the user area or save area specified by the
AREA operand.

132 WSim Script Guide and Reference

DBCS2SB
Converts ward 42 (EBCDIC) DBCS data to SBCS data in the data coded
for the TEXT operand and saves the result in the user area or save area
specified by the AREA operand.

SB2DBCS
Converts SBCS data to ward 42 (EBCDIC) DBCS data in the data coded
for the TEXT operand and saves the result in the user area or save area
specified by the AREA operand.

SB2MDBCS
Converts SBCS data to ward 42 (EBCDIC) DBCS data with SO/SI
characters wrapped around it in the data coded for the TEXT operand
and saves the result in the user area or save area specified by the
AREA operand.

TRANSLATE
Specifies that the data coded for the TEXT operand is to be translated
using the TABLEI, TABLEO, and PAD operand values. The data
specified by TABLEI is searched for each character of the TEXT string.
If found, the corresponding character in the data specified by the
TABLEO operand replaces the TEXT character in the result. If the
TEXT character is not found in the TABLEI data, it is left unchanged in
the result. If a character occurs more than once in the TABLEI data, the
first occurrence is the one used. If the TABLEO data is shorter than the
TABLEI data, the TABLEO data is padded with the character specified
by the PAD operand.

If TABLEO, TABLEI, and PAD are all omitted, lower case characters in
the TEXT data are translated to upper case and all other characters are
unchanged.

For individual defaults for TABLEO, TABLEI, and PAD, see those
operand descriptions.

Default: None. This operand is optional.

INSERT=(data)
Function: Specifies the string data to be inserted into the data coded in the
TEXT operand.

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=INSERT or FUNCTION=OVERLAY is coded.

Format: You can code any amount of data for this operand. If the resulting
string is longer than the space available in the save area, the data is truncated
and a message is written to the log data set.

The data is enclosed by the text delimiting character specified on the MSGTXT
statement. (The defaults are left and right parentheses.) You can also continue
the data.

You can use the data field options (see Chapter 9, “Data field options,” on page
199). To enter hexadecimal data, enclose the digits within single quotes. To
enter a single quote, a special control character (CONCHAR), or a text
delimiter (TXTDLM) as data, enter two of the characters. If you enter two text
delimiting characters, they must be on the same statement; you cannot
continue the statement between the characters.

Default: None.

Chapter 8. Defining the message generation deck 133

LENG={value|100}
Function: Specifies, in bytes, the amount of data to be saved for later recall. If
the specified length is greater than the space available in the save area or user
area, the available length is used, and an informational message is written to
the log data set. If the LENG operand value is greater than the length of the
data in the device buffer, only the available data is saved.

Note: This operand is not valid if the TEXT operand is coded.

Format: value can be an integer from 1 to 32767 or a counter specification
whose value is within this range.

Default: 100

LOC={B±value|C±value|D+value|TH+value|RH+value|RU+value|(row,col)|*}
Function: Specifies the location of the data to be saved.

If the DATASAVE statement is encountered as a result of an IF statement
execute function (that is, THEN=Ename-label) with WHEN=IN coded, then data
is saved from the device input buffer. Otherwise, data is saved from the device
output buffer. For display devices, the output buffer is the screen image if B±,
C±, or (row,col) is specified.

Note: This operand is not valid if the TEXT operand is coded.

Format: For the LOC operand, you can code one of the following options. value
can be an integer from 0 to 32766 or a counter specification whose value is
within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

B±value
+value specifies that the data to be saved is at an offset from the start
of the device buffer, excluding any headers. For display devices, -value
indicates an offset back from the end of the screen image buffer. For
non-display devices, -value indicates an offset back from the end of the
data in the device buffer.

C±value
+value specifies an offset from the current cursor position. -value
specifies an offset back from the cursor. You should use this value only
with display devices.

D+value
+value specifies an offset from the start of the data stream.

TH+value
+value specifies an offset from the start of the transmission header.

RH+value
+value specifies an offset from the start of the request header.

RU+value
+value specifies an offset from the start of the request unit.

(row,col)
Indicates that the test is to be made at the specified row and column of
the screen image of a display device, where row and col may be an
integer from 1 to 255 or a counter specification whose value is within
this range. You should use this value only with display devices.

* Specifies that data is to be saved from the input area location that was

134 WSim Script Guide and Reference

coded on the last logic test that was executed and had its THEN action
taken. This option is valid only when the DATASAVE statement is
encountered as a result of a logic test execute function, (for example,
THEN=Ename-label). The data to be saved begins with the first
character of the data string that satisfied the logic test. If the last logic
test executed did not specify a device buffer location, or its THEN
action was not an execute function, no data is saved and an
informational message is written to the log data set.

Default: B+0

PAD={char|blank}
Function: Specifies the character to be used as padding when BITAND, BITOR,
BITXOR, CENTER, OVERLAY, SPACE, STRIP, STRIPL, STRIPT, INSERT, LEFT,
RIGHT, or TRANSLATE is specified for the FUNCTION operand.

Note: This operand is only valid when the TEXT operand is coded along with
the specified functions.

Format: char is a 1-character string constant or a 2-character hexadecimal
constant. When you use a special character (such as a quote or parenthesis) as
padding, do not double it.

Default: When FUNCTION=BITAND is coded, the default is X'FF'. When
BITOR or BITXOR is coded for the FUNCTION operand, the default is X'00'.
Otherwise, the default is blank (X'40').

PLENG=value
Function: When INSERT or OVERLAY is coded for the FUNCTION operand,
value specifies the number of characters to which the data specified by the
INSERT operand is truncated or padded when data is inserted into, or overlaid
on, the data specified by the TEXT operand. When FUNCTION=DELETE is
coded, value specifies the number of characters to be deleted. When
FUNCTION=SPACE is coded, value specifies the number of blanks or
characters specified by the PAD operand, to place between the words. If value
is 0, all blanks are removed. Leading and trailing blanks are always removed.
When CENTER, LEFT or RIGHT is coded for the FUNCTION operand, value
specifies the number of characters to which the data coded for the TEXT
operand is truncated or padded. When DELWORD or SUBWORD is coded for
the FUNCTION operand, value specifies the number of words to delete or
return.

Note: This operand is only valid when the TEXT and FUNCTION operands
are coded.

Format: An integer from 0 to 32767 or a counter specification whose value is
within the range.

Default: When INSERT or OVERLAY is coded for the FUNCTION operand,
the default is the length of the data specified by the INSERT operand. When
FUNCTION=DELETE is coded, the default is the length of the TEXT data after
the position specified by the POS operand. When FUNCTION=SPACE is
coded, the default is 1. When CENTER, LEFT or RIGHT is coded for the
FUNCTION operand, there is no default, and a value is required. When
DELWORD or SUBWORD is coded for the FUNCTION operand, the default is
the number of words left in the TEXT data after the word in the position
specified by the POS operand.

POS=value
Function: When FUNCTION=INSERT is coded, value specifies the position in

Chapter 8. Defining the message generation deck 135

the TEXT data after which the data coded for the INSERT operand is inserted.
When FUNCTION=OVERLAY is coded, value specifies the first position in the
TEXT data to be overlaid with the data coded for the INSERT operand. When
FUNCTION=DELETE is coded, value specifies the first position in the TEXT
data to be deleted. When DELWORD or SUBWORD is coded for the
FUNCTION operand, value specifies the word position in the TEXT data.

Note: This operand is only valid when the TEXT operand is coded and when
DELETE, DELWORD, INSERT, OVERLAY or SUBWORD is coded on the
FUNCTION operand.

Format: When FUNCTION=INSERT is coded, value can be an integer from 0 to
32766 or a counter specification whose value is within that range. If value is
greater than the length of the data specified in the TEXT operand, pad
characters are inserted after the TEXT data, with the INSERT data following. If
value is zero, the data coded in the INSERT operand is inserted before the
beginning of the data coded in the TEXT operand.

When FUNCTION=OVERLAY is coded, value can be an integer from 1 to 32767
or a counter specification whose value is within that range. If value is greater
than the length of the data specified in the TEXT operand, pad characters are
added to the TEXT data.

When DELETE, DELWORD or SUBWORD is coded on the FUNCTION
operand, value can be an integer from 1 to 32767 or a counter specification
whose value is within that range.

Default: When FUNCTION=INSERT is coded, the default is 0. When
FUNCTION=OVERLAY is coded, the default is 1. When DELETE, DELWORD
or SUBWORD is coded for the FUNCTION operand, there is no default and a
value must be specified.

TABLEI=(data)
Function: Specifies the input table to be used with the translation of the data
coded in the TEXT operand.

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=TRANSLATE is coded.

Format: You can code any amount of data for this operand, but you would not
normally code more than 256 characters. See the description of the
TRANSLATE function under the FUNCTION operand for details of how this
data is used.

The data is enclosed by the text delimiting character specified on the MSGTXT
statement. (The defaults are left and right parentheses.) You can also continue
the data.

You can use the data field options (see Chapter 9, “Data field options,” on page
199). To enter hexadecimal data, enclose the digits within single quotes. To
enter a single quote, a special control character (CONCHAR), or a text
delimiter (TXTDLM) as data, enter two of the characters. If you enter two text
delimiting characters, they must be on the same statement; you cannot
continue the statement between the characters.

Default: If TABLEO or PAD is coded, the default for TABLEI is the 256 byte
string of hexadecimal codes 00,01,02,..., FF. Otherwise, no default.

TABLEO=(data)
Function: Specifies the output table to be used with the translation of the data
coded in the TEXT operand.

136 WSim Script Guide and Reference

Note: This operand is only valid when the TEXT operand is coded and when
FUNCTION=TRANSLATE is coded.

Format: You can code any amount of data for this operand, but you would not
normally code more than 256 characters. See the description of the
TRANSLATE function under the FUNCTION operand for details of how this
data is used.

The data is enclosed by the text delimiting character specified on the MSGTXT
statement. (The defaults are left and right parentheses.) You can also continue
the data.

You can use the data field options (see Chapter 9, “Data field options,” on page
199). To enter hexadecimal data, enclose the digits within single quotes. To
enter a single quote, a special control character (CONCHAR), or a text
delimiter (TXTDLM) as data, enter two of the characters. If you enter two text
delimiting characters, they must be on the same statement; you cannot
continue the statement between the characters.

Default: If TABLEI or PAD is coded, the default for TABLEO is a string of
repeated PAD characters equal in length to the data specified or defaulted for
TABLEI. Otherwise, no default.

TEXT=([data])
Function: Specifies the text data to be saved in the save area or user area based
on the function specified for the FUNCTION operand.

Note: If this operand is coded, the LENG and LOC operands are not valid.

Format: You can code any amount of data for this operand. If the data is
longer than the space available in the save area or user area, it is truncated,
and an informational message is written to the log data set.

The data is enclosed by the text delimiting characters specified on the MSGTXT
statement. (The default is left and right parentheses.) You can also continue the
data.

You can use the data field options (see Chapter 9, “Data field options,” on page
199). Enter hexadecimal data by enclosing the digits within single quotes. To
enter a single quote, a special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, enter two of the characters. If two text
delimiting characters are entered, they must be on the same statement (no
continuation between the characters).

If the TEXT operand specifies only two text delimiting characters with no
intervening data (for example, TEXT=(),), a clear function is executed.
Specifying TEXT=() also frees a dynamically allocated save area. If the AREA
operand specifies a save area number, the length of data saved in that save
area is set to zero. If the AREA operand specifies an offset into a user area, the
user area is usually cleared to binary zeros from the specified offset to the end.
This will not be the case if the FUNCTION operand or CONVERT=YES has
also been specified. In those cases, the user area is unchanged.

Default: None. This operand is optional.

TEXT2=([data])
Function: Specifies the text data to be used when BITAND, BITOR or BITXOR
is coded for the FUNCTION operand.

Note: If this operand is coded, the LENG and LOC operands are not valid.

Format: See the TEXT description above.

Chapter 8. Defining the message generation deck 137

Default: None. This operand is optional.

DEACT - deactivate logic test and ON condition statement

[name] DEACT {IFS={(num,...)|ALL}}
{ONEVENTS={(event,...)|ALL}}

Function

The DEACT statement globally or selectively deactivates message generation logic
tests before the time that WSim normally performs logic test deactivation. This
statement deactivates the indicated logic tests even if STATUS=HOLD was
specified. It also globally or selectively deactivates ON conditions.

The DEACT statement does not affect network-level IF statements, and it does not
affect message generation IF statements that specify WHEN=IMMED.

Note: Code either the IFS operand or the ONEVENTS operand. Both operands
cannot appear on the same DEACT statement.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

IFS={(num,...)|ALL}
Function: Specifies the logic test numbers in the message generation deck that
are to be deactivated.

Note: This operand cannot be continued. The number of nums allowed is
limited by those that can be coded on a single statement.

Format: For the IFS operand, you can code one of the following values:

num,... Specifies a list of unframed integers from 0 to 255, separated by
commas and enclosed in parentheses. Each num corresponds to the
name field of an IF statement.

ALL Specifies all currently active message generation deck IF statements are
to be deactivated.

Default: None. You must code either the IFS or ONEVENTS operand on a
DEACT statement.

ONEVENTS={(event,...)|ALL}
Function: Specifies the events named by ON statements which have been
activated for this terminal and which are to be deactivated.

Note: This operand cannot be continued. The number of events allowed is
limited by those that can be coded on a single statement.

Format: For the ONEVENTS operand, you can code one of the following
values:

138 WSim Script Guide and Reference

event... Specifies a list of event names, separated by commas and enclosed in
parentheses. Each event must be a 1- to 8-character alphanumeric name
or a reference to a user area or save area.

ALL Specifies that all currently active ON conditions for this terminal are to
be deactivated.

Default: None. Either the IFS or ONEVENTS operand must be coded on a
DEACT statement.

DELAY - delay statement

[name] DELAY TIME={integer}
{A(integer)}
{F(integer)}
{R(value1[,value2])}
{T(integer)}
{cntr}

[,UTI=uti]

Function

The DELAY statement specifies an inter-message delay that overrides the normal
think time for the device, as specified by the DELAY operand on the network
configuration statements. This statement affects only the delay after the message
that is currently being generated.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

TIME={integer|A(integer)|F(integer)|R(value1[,value2])|T(integer)|cntr}
Function: Specifies a value that, when multiplied by the user time interval
(UTI), provides a delay that overrides the DELAY operand on the NTWRK,
DEV, TP, APPCLU, and LU statements.

Format: For the TIME operand, you can code one of the following values:

integer Specifies a fixed value, where integer is an integer ranging from 0 to
2147483647.

A(integer)
Specifies a delay to be chosen randomly from the range 0 to 2 times
the integer, where integer is from 0 to 1073741823. The average delay
will be integer.

F(integer)
Specifies a fixed value (the same as TIME=integer), where integer is
from 0 to 2147483647.

R(integer)
Specifies a delay chosen randomly from the range on the RN statement
referenced by the specified integer, where integer is from 0 to 225.

Chapter 8. Defining the message generation deck 139

R(value1,value2)
Specifies a delay chosen randomly in the range of low (value1) to high
(value2), where value1 is from 0 to 2147483646 and value2 is from 1 to
2147483647 or counter specifications whose values are within these
ranges. value1 must be less than value2. If either value is a counter and
value1 is less than value2, the DELAY statement is processed as if
DELAY TIME=F(0) was coded.

T(integer)
Specifies a delay chosen randomly from the rate table on the RATE
statement referenced by the specified integer, where integer is from 0 to
225.

cntr Specifies a delay chosen by the counter specification whose value is in
the range from 0 to 2147483647.

Default: None. This operand is required.

UTI=uti
Function: Specifies a UTI which is to be used in calculating this delay. uti must
reference a UTI statement defined within the network configuration statements.

Format: From one to eight alphanumeric characters.

Default: None. This operand is optional.

DELETE - delete key statement

[name] DELETE CHARS=value

Function

The DELETE statement simulates the action of the delete key on the 3270 display
device.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CHARS=value
Function: Specifies the number of characters to be deleted from the simulated
screen.

Format: For the CHARS operand, value can be one of the following:

integer Specifies a fixed value, where integer is an integer from 1 to 255.

cntr Specifies a counter specification whose value is within the range of 1 to
255.

Default: None. This operand is optional.

Note: Screen data will be shifted left on the simulated screen as data is
deleted.

140 WSim Script Guide and Reference

DUP - dup key statement

[name] DUP

Function

The DUP statement simulates the action of the duplicate key on a display device.
This statement is valid for 3270 and 5250 simulation. This statement is a delimiter
in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ENDTXT - end message generation deck statement

[name] ENDTXT

Function

The ENDTXT statement indicates the end of a message generation deck. If no
message generation deck calls are outstanding, the ENDTXT statement causes
message generation processing to select a new path entry. If a message generation
deck call is outstanding, the ENDTXT statement generates an automatic RETURN.
This statement is required at the end of each message generation deck. This
statement is a conditional delimiter.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Note: If a message was built but not yet sent to the system under test and
MORE=YES is not coded on the last TEXT statement of that message, then the
ENDTXT statement will cause the message to be sent. If MORE=YES was coded on
the TEXT statement, then the ENDTXT statement will not cause the message to be
sent.

Chapter 8. Defining the message generation deck 141

ENTER - enter key statement

[name] ENTER

Function

The ENTER statement simulates the action of the Enter key on a display device.
This statement is valid for 3270 and 5250 simulation. This statement is a delimiter
in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

EREOF - erase to end of field key statement

[name] EREOF

Function

The EREOF statement simulates the action of the Erase to the End of Field key on
a display device. This statement is valid for 3270 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ERIN - erase input key statement

[name] ERIN

Function

The ERIN statement simulates the action of the Erase Input key on a display
device. This statement is valid for 3270 and 5250 simulation. This statement is a
delimiter in some cases.

142 WSim Script Guide and Reference

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ERROR - error simulation statement

[name] ERROR STATUS=’xxxx’

Function

The ERROR statement performs the following functions:
v Provides logical error simulation for 3270 devices
v Generates the SNA sense bytes for an LU2 device.

This statement is valid for 3270 simulation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

STATUS='xxxx'
Function: Specifies the sense and status information to be entered.

Format: Four hexadecimal digits enclosed in single quotes.

Default: None. This operand is required.

EVENT - event statement

[name] EVENT {POST=event}
{QSIGNAL=event}
{RESET=event}
{SIGNAL=event}
[,EVENTTAG=tag]
[,TIME=ssssssss]

Function

The EVENT statement performs a post, reset, or signal action on the named event.

Note: You must code either the POST, QSIGNAL, RESET, or SIGNAL operand.
However, only one of these operands can appear on the EVENT statement.

Chapter 8. Defining the message generation deck 143

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

POST=event
Function: Specifies the name of an event that is to be posted complete.

Format: For the POST operand, you can code one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

event Specifies the name of the event to be posted, where event is one to
eight alphanumeric characters.

N±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

Ns+value
Specifies an event name to be referenced at an offset from the start of
the network save area where s is the network save area and can be any
integer from 1 to 4095.

s+value
Specifies an event name to be referenced at an offset from the start of
the device save area where s is the device save area and can be any
integer from 1 to 4095.

Note: You can use N±value, U±value, Ns+value, and s+value for variable event
names. The first eight bytes of data beginning at the offset (value) comprise the
name. For the network and device user area, code the name and then pad it
with blanks if the length of the name is less than eight. If the area does not
exist or no data is present, the name will consist of eight blanks. Because no
validity checking is performed on the name, you can use a name that cannot
be expressed as EBCDIC characters. You can put the name to be referenced
into the save area or user area with a DATASAVE statement.

Default: None.

QSIGNAL=event
Function: Specifies the name of an event which is to be signaled. This operand
will signal the event only for the device that issued the QSIGNAL.

Format: Refer to the POST operand format for more information.

Default: None.

RESET=event
Function: Specifies the name of an event that is to be marked not complete.

Format: Refer to the POST operand format for more information.

144 WSim Script Guide and Reference

Default: None.

SIGNAL=event
Function: Specifies the name of an event which is to be signaled.

Format: Refer to the POST operand format for more information.

Default: None.

EVENTTAG=tag
Function: Specifies a tag to be assigned to an EVENT statement to be
referenced by the CANCEL statement when canceling event actions associated
with a timer expiration.

Format: Refer to the POST operand format for more information.

Default: Event name specification coded on the POST=, RESET=, QSIGNAL=,
or SIGNAL= operand.

Note: The same tag may be assigned to one or more EVENT statements. If the
TIME= operand is not coded, the EVENTTAG= operand is ignored. The tag
value is resolved when the EVENT statement is executed. The event name is
resolved when the timer expires.

TIME=ssssssss
Function: Specifies the number of seconds that the action specified by this
EVENT statement is to be delayed.

Format: value can be an integer from 1 to 21474836 or a counter specification
whose value is within this range.

Default: The action occurs immediately if you do not code this operand.

EXIT - user exit statement

[name] EXIT MODULE=name
[,PARM=(data...)]

Function

The EXIT statement invokes a user exit routine during message generation
processing. It allows the exit routine to control message generation by using return
codes.

Note: Refer to , SC31-8950 for more information on user exit routines.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

MODULE=name
Function: Specifies the member (user exit load module) in the load library that
was loaded during initialization and is to gain control when this statement is
encountered during message generation.

Chapter 8. Defining the message generation deck 145

Format: A 1- to 8-character name that conforms to standard JCL member
naming conventions.

Default: None. This operand is required.

PARM=(data...)
Function: Specifies the user parameter to be passed to the user exit when it is
called during message generation.

Format: From 1 to 100 characters enclosed in the text delimiting characters for
this message generation deck. (The default is left and right parentheses). You
can code hexadecimal data by enclosing the characters within single quotes. To
enter the delimiting characters or a single quote as data, enter two of the
characters. You can also continue the data. See “Continuing statements” on
page 5 for information about continuing statements.

Default: None. This operand is optional.

The user exit routine must set one of the following return codes in register 15:

Code Meaning

0 Continue in message generation as if the user exit had not been called.

4 Continue in message generation as though a delimiter had not been
previously processed. For 3270 and 5250 simulation, a null attention
indicator (AID) is set.

8 A message was generated by the user exit. Continue processing as if the
message had been generated by a TEXT statement.

12 Set the wait indicator for the device and stop message generation
processing. If a message was generated before calling the exit routine,
transmit it now.

16 Stop message generation processing at this point but do not set the wait
indicator for the device. If a message was generated before calling the exit
routine, transmit it now.

FLDADV - field advance key statement

[name] FLDADV

Function

The FLDADV statement simulates the action of the Field Advance key on a 5250
display device. This statement is valid only for 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

146 WSim Script Guide and Reference

FLDBKSP - field backspace key statement

[name] FLDBKSP

Function

The FLDBKSP statement simulates the action of the Field Backspace key on a 5250
display device. This statement is valid only for 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

FLDMINUS - field minus key (F-) statement

[name] FLDMINUS

Function

The FLDMINUS statement simulates the action of the Field Minus (F-) key on a
5250 display device. This statement is valid only for 5250 simulation. This
statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

FLDPLUS - field exit or field plus key (F+) statement

[name] FLDPLUS

Function

The FLDPLUS statement simulates the action of the Field Exit or Field Plus (F+)
key on a 5250 display device. This statement is valid only for 5250 simulation. This
statement is a delimiter in some cases.

Chapter 8. Defining the message generation deck 147

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

FM - field mark key statement

[name] FM

Function

The FM statement simulates the action of the Field Mark key on a display device.
This statement is valid for 3270 simulation. This statement is a delimiter in some
cases.

Where

name
Function: Specifies a name to be used in branching during message generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

HELP - help key statement

[name] HELP [CODE={cccc|0000}]

Function

The HELP statement simulates the action of the Help key on a 5250 display device.
This statement is valid only for 5250 simulation. This statement is a delimiter in
some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CODE={cccc|0000}
Function: Specifies the error code to be entered on the error line.

Format: Any four EBCDIC characters.

Default: 0000

148 WSim Script Guide and Reference

HIGHLITE - display highlight select statement

[name] HIGHLITE {BLINK|FIELD|REVERSE|UNDERLINE}

Function

The HIGHLITE statement simulates the action of a 3270 device key that selects the
highlighting option for displaying subsequent data input. This statement is valid
for 3270 simulation.

Note: If you do not code the HIGHLITE statement, the highlighting option will be
selected by the extended field attribute byte value. This statement is a delimiter in
some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

{BLINK|FIELD|REVERSE|UNDERLINE}
Function: Specifies the highlighting option to be used for displaying
subsequent data input from this device.

Format: You can code one of the following keywords for this statement:

BLINK
Specifies that the display of the input data will alternate between
display and non-display modes.

FIELD Specifies that the highlighting option defined by the extended field
attribute byte will be selected.

REVERSE
Specifies that the input data will be displayed as reversed image
characters.

UNDERLINE
Specifies that the displayed input data will be underlined.

Default: FIELD

HOME - home key statement

[name] HOME

Function

The HOME statement simulates the action of the Home key on a display device.
This statement is valid for 3270 and 5250 simulation. This statement is a delimiter
in some cases.

Chapter 8. Defining the message generation deck 149

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

IF - message generation deck logic test statement

integer IF {CURSOR=(row,col)}
{EVENT=event}
{LOC=location}
{LOCTEXT={cntr|(data)|integer}}
[,AREA=area]
[,COND={EQ|GE|GT|LE|LT|NE}]
[,DATASAVE=(area,loc,leng)]
[,DELAY=CANCEL]
[,ELSE=action]
[,LENG=value]
[,LOCLENG=operand]
[,LOG=(data)]
[,RESP=NO]
[,SCAN={YES|value}]
[,SCANCNTR=cntr]
[,SNASCOPE={ALL|LOC|REQ|RSP}]
[,STATUS=HOLD]
[,TEXT={RESP|cntr|(data)|’xx’|integer}]
[,THEN=action]
[,TYPE=type]
[,UTBL=name]
[,UTBLCNTR=cntr]
[,WHEN={IMMED|IN|OUT}]

Function

The message generation deck IF statement performs the following functions:
v Specifies comparisons that are to be done on data sent or received by WSim or

on terminal or device counter values, switch settings, or data areas
v Tests for event completions
v Sets switches, overrides normal SNA responses, cancels current delays, saves

data, logs messages, or alters message generation paths based on the results of
the comparisons.

The IF statement is activated and deactivated within the execution of a message
generation deck and it is evaluated in the numerical order of the name fields.

Note: See Chapter 14, “Conditions logic test not evaluated,” on page 217 for more
information on conditions under which a logic test is not evaluated. Refer to ,
SC31-8945 for examples of logic tests.

Where

integer
Function: Specifies the number of the logic test. This field controls the order in
which the message generation logic tests are evaluated for all IF statements

150 WSim Script Guide and Reference

that do not contain WHEN=IMMED. For example, if logic tests 3, 5, and 1 are
active, the order of test evaluation is 1, 3, and 5.

Format: An integer from 0 to 4095.

Default: None. This field is required for all IF statements that do not contain
WHEN=IMMED. The integer is not used for IF statements which specify
WHEN=IMMED, or for internal deck branching.

Note: A message generation logic test is deactivated when the next TEXT
statement is processed in the message generation deck, unless you code the
STATUS=HOLD operand. If another IF statement is encountered with the same
name field and WHEN=IMMED is not specified on the new IF statement, the
first IF statement is deactivated, and the new IF statement is activated. You can
also deactivate a message generation deck IF statement by specifying its name
in a DEACT statement.

CURSOR=(row,col)
Function: Specifies the cursor position to be compared with the current cursor
position.

Note: The logic test will not be evaluated if the device is not a display device.

Format: Two values, each of which can be either an integer between 1 and 255
or a counter specification whose value is within this range specifying the row
and column positions, respectively.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: If you code the CURSOR operand, do not code the AREA, COND,
EVENT, LENG, LOC, LOCLENG, LOCTEXT, SCAN, SCANCNTR, TEXT,
UTBL, and UTBLCNTR operands.

EVENT=event
Function: Specifies the name of a wait or post event that is to be tested.

Format: For the EVENT operand, you can code one of the following options.
value can be an integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value). For save area references, s can be an integer from 1 to 4095.

name Specifies the name of the event to be tested for completion, where name
is one to eight alphanumeric characters.

N±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

Ns+value
Specifies an event name to be referenced at an offset from the start of
the network save area where s is the network save area.

s+value
Specifies an event name to be referenced at an offset from the start of
the device save area where s is the device save area.

Chapter 8. Defining the message generation deck 151

Note: You can use N±value, U±value, Ns+value, and s+value for variable event
names. The first eight bytes of data beginning at the offset (value) comprise the
name. For the network and device user area, code the name and then pad it
with blanks if the length of the name is less than eight. If the area does not
exist or no data is present, the name will consist of eight blanks. Because no
validity checking is performed on the name, you can use a name that cannot
be expressed as EBCDIC characters. You can put the name to be referenced
into the save area or user area with a DATASAVE statement.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: If you code the EVENT operand, do not code the AREA, COND,
CURSOR, LENG, LOC, LOCLENG, LOCTEXT, SCAN, SCANCNTR, TEXT,
UTBL, and UTBLCNTR operands.

LOC=location
Function: Specifies the starting location where the comparison is to take place.
See Chapter 10, “Data locations,” on page 209 for more device-specific
information.

Note: If you code the LOC operand, do not code the CURSOR, EVENT, or
LOCTEXT operands. If the LOC operand is coded and the location is not a
switch or counter, the LOCLENG operand can also be coded.

Format: For the LOC operand, you can code one of the following options
which represent offsets where value specifies the offset. value can be any integer
from 0 to 32766 or a counter specification whose value is within this range.
Zero is the offset to the first byte of the field for positive offsets (+value) and
the offset to the last byte of the field for negative offsets (-value).

B±value Ns+value TSWn|TSWm|... TSEQ
C±value s+value SWn DSEQ
D+value (row,col) SWn&SWm&;.. NCn
TH+value NSWn SWn|SWm|... LCn
RH+value NSWn&NSWm&;.. NSWn&TSWm&SWn&;.. TCn
RU+value NSWn|NSWm|... NSWn|TSWm|SWn|... DCn
N±value TSWn NSEQ
U±value TSWn&TSWm&;.. LSEQ

value can be an integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

Option Description

B±value
For +value begin testing an offset from the start of data in the device
buffer. (For display devices, the device buffer is the screen image
buffer.) For non-display devices and -value, begin testing at an offset
back from the end of the data in the device buffer. For display devices
and -value, begin testing at an offset back from the end of the screen
image buffer.

C±value
Begin testing at an offset from the cursor for +value or at an offset back
from the cursor for -value. Normally, use this location only with display
devices.

152 WSim Script Guide and Reference

D+value
Begin testing at an offset from the start of the incoming or outgoing
data stream. This includes the transmission header and the request
header.

TH+value
Begin testing at an offset from the start of the transmission header.

RH+value
Begin testing at an offset from the start of the request header.

RU+value
Begin testing at an offset from the start of the request unit.

N±value
Begin testing at an offset from the start (+value) or back from the end
(-value) of the network user area.

U±value
Begin testing at an offset from the start (+value) or back from the end
(-value) of the device user area.

Ns+value
Begin testing at an offset from the start of the network save area
specified by s, where s is an integer from 1 to 4095.

s+value
Begin testing at an offset from the start of the device save area
specified by s, where s is an integer from 1 to 4095.

(row,col)
Indicates that the test is to be made at the specified row and column of
the screen image of a display device, where row and col may each be
an integer from 1 to 255 or a counter specification whose value is
within this range. If specified for a non-display device type, the test
will not be evaluated.

Note: You can combine network, terminal, and device level switches to be
tested, according to the above rules (for example, TSW5|SW3|NSW7|NSW28).
However, you cannot mix the & and | operators in the same LOC operand
specification. Also, when one of the counter operands is coded, the
corresponding value of the TEXT operand must be specified as numeric data
or another counter.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Notes:

v If, when a logic test is to be evaluated, the specified data location is not
valid (the location is outside the buffer or user area or not within the data
transferred), the logic test is not evaluated and no action is taken unless the
LOCLENG operand is coded. For more information, see Chapter 14,
“Conditions logic test not evaluated,” on page 217.

v When multiple partitions are defined for a 3270 device, buffer or cursor
offsets (B+, B-, C+, C-) will reference the data in the presentation space of
the currently active partition. The combination (row,col) value will reference
the display as you would see it, which could include data from more than
one partition. The logic test will be performed against the presentation space
data of the partition that owns the area of the display referenced by the
(row,col) specification.

Chapter 8. Defining the message generation deck 153

v For VTAMAPPL LUs, TSW, TSEQ, LSEQ, TCn, and LCn will reference a
single set of switches and counters allocated to each VTAMAPPL.

v See Chapter 12, “Counters and switches,” on page 213 for valid counter and
switch specifications.

LOCTEXT={cntr|(data)|integer}
Function: Specifies the location value where the comparison is to take place.
See Chapter 10, “Data locations,” on page 209 for more device-specific
information.

Note: If you code the LOCTEXT operand, do not code the AREA, CURSOR,
EVENT, LENG, LOC, or LOCLENG operands.

Format: For the LOCTEXT operand, you can enter one of the following values:

cntr The counter to be used in the comparison. The valid values for cntr are
NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn, and DCn, where n is an
integer from 1 to 4095. These counters are explained under the LOC
operand on this statement. The LOCTEXT operand can specify a
counter value only if the TEXT operand specifies a counter or integer
value.

(data) The data coded within the text delimiter specified on the MSGTXT
statement is to be used as the comparison data. The data field options
can be used to specify the data (see Chapter 9, “Data field options,” on
page 199).

When comparing for specified data, enter hexadecimal data within the
text delimiters by enclosing the digits within single quotes. Two digits
compose one hexadecimal character. For example, LOCTEXT=(ABC)
will generate a comparison for the three characters ABC.
LOCTEXT=('AB'CD) is a comparison for three bytes including one
hexadecimal character of AB and two EBCDIC characters of CD. A
maximum of 32767 characters will be used for comparison.

To enter a single quote, text delimiter (TXTDLM), or data field option
control character (CONCHAR) as data, enter two of the characters. You
can also continue the data on the next line.

integer A 1- to 10-digit integer between 0 and 2147483647 is to be used for the
comparison. This format is valid when the TEXT operand specifies a
counter or integer value.

Default: None. You must code either the CURSOR, EVENT, LOC, or LOCTEXT
operand.

Note: When the LOCTEXT operand is coded, the THEN or ELSE action on the
IF statement is always executed as long as the IF statement meets the criteria
set by the SNASCOPE, TYPE, and WHEN operands. The string data
comparison allows for unequal or null strings, with the shorter string being
padded with blanks, unless SCAN is also coded. In this case, the LOCTEXT
data is scanned and substrings within it equal to the length of the TEXT data
are compared to the TEXT data.

AREA=area
Function: Specifies a user area or save area location which contains the text
value for which the test is to be made.

Format: For the AREA operand, you can code one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive

154 WSim Script Guide and Reference

offsets (+value) and the offset to the last byte of the field for negative offsets
(-value). For save area references, s can be an integer from 1 to 4095.

N±value
Specifies that the text is located at an offset from the start (+value) or
back from the end (-value) of the network user area.

U±value
Specifies that the text is located at an offset from the start (+value) or
back from the end (-value) of the device user area.

Ns+value
Specifies that the text is located at an offset from the start of the
network save area, where s is the network save area.

s+value
Specifies that the text is located at an offset from the start of the device
save area, where s is the device save area.

Default: None. The AREA, TEXT, or UTBL operand is required except when
the LOC operand is specified for switch testing or the EVENT operand is
specified. If you code this operand, you may also code the LENG operand.
This operand may not be coded if the LOC operand specifies a sequence or
index counter, or if the LOCTEXT or TEXT operand is coded.

COND={EQ|GE|GT|LE|LT|NE}
Function: Specifies the condition for which the comparison is to be made. The
data field identified by the LOC or LOCTEXT operand is compared to the data
specified in the TEXT or AREA operands, and the condition set. If the
condition specified by the COND operand is met, the THEN action is taken. If
the condition specified by the COND operand is not met, the ELSE action is
taken.

Format: For the COND operand, you can code one of the following values:

EQ The two fields are equal.

GE The LOC data is greater than or equal to the TEXT or AREA data or
the LOCTEXT data is greater than or equal to the TEXT data.

GT The LOC data is greater than the TEXT or AREA data or the LOCTEXT
data is greater than the TEXT data.

LE The LOC data is less than or equal to the TEXT or AREA data or the
LOCTEXT data is less than or equal to the TEXT data.

LT The LOC data is less than the TEXT or AREA data or the LOCTEXT
data is less than the TEXT data.

NE The two fields are not equal.

Default: EQ

Note: This option is not valid for a logic test that tests switches, performs a
test under mask, tests an event, or tests a cursor position.

DATASAVE=(area,loc,leng)
Function: Specifies data to be saved in a save area when the logic test is made
and the THEN action is taken. This operand is valid only if you also code a
THEN operand on the same statement. If THEN=E(name), E(name-label), or
E(label) is coded, the execute action is taken after the data save is performed.

Chapter 8. Defining the message generation deck 155

Note: You cannot use the DATASAVE operand with IF statements that specify
WHEN=IMMED.

Format: For the DATASAVE operand, you can code the following three values,
enclosed in parentheses and separated by commas:

area Specifies which of the save areas is to be used for data retention, where
area is either a device save area s, or a network save area Ns, where s is
an integer from 1 to 4095.

loc Specifies the location of the data to be saved. You can enter either
B+value, C+value, D+value, TH+value, RH+value, or RU+value where
value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. B (device buffer), C (cursor), D (data
stream), TH (transmission header), RH (request header), and RU
(request unit) are defined under the LOC operand.

leng Specifies in bytes the amount of data to be saved, where leng is an
integer from 1 to 32767 or a counter specification whose value is within
this range.

Each time data is saved in a save area, the length of that data is also saved and
is used when the data is recalled.

If the data to be saved is longer than the save area, the data will be truncated.
If the data is shorter than what is specified by the leng parameter, only the
available data will be saved.

Default: None. This operand is optional.

DELAY=CANCEL
Function: Specifies that the current active delay is to be canceled. The delay is
canceled only when the THEN action specified on the IF statement is taken.

Format: CANCEL

Default: None. This operand is optional.

Note: This operand is valid only if a THEN operand is also specified on the
same IF statement. This operand is invalid on IF statements that specify
WHEN=IMMED.

ELSE=action
Function: Specifies the action to be taken if the condition was not met, the
tested switches were off, or the tested event was not complete.

Note: If the ELSE operand is omitted and the condition is not met, no action is
taken (all indicators and message generation paths are left as they were before
the IF statement was encountered).

Format: For the ELSE operand, you can code one of the following options:

Bname-label CONT NSW(ON) SW(ON)
Bname WAIT NSW(OFF) SW(OFF)
B-label NSWn(ON) SWn(ON)
Cname-label QUIESCE NSWn(OFF) SWn(OFF)
Cname RELEASE
C-label TSW(ON) WAIT(event)
Ename-label RETURN TSW(OFF) POST(event)
Ename IGNORE TSWn(ON) RESET(event)
E-label ABORT TSWn(OFF) SIGNAL(event)

156 WSim Script Guide and Reference

QSIGNAL(event)
VERIFY[-(data)]

Default: None. You must code either the THEN or ELSE operand.

For a description of these options, see the THEN operand.

When a BRANCH, CALL, RETURN, QUIESCE, RELEASE, or CONT action is
taken, the WAIT condition is reset to OFF. However this does not reset the
event wait condition.

LENG=value
Function: Specifies the length of the text in the user area or save area specified
by the AREA operand.

Format: value can be an integer from 1 to 32767 or a counter specification
whose value is within this range.

Default: None. The amount of data remaining in the area starting from the
offset specified. This operand is not allowed if you code the LOCTEXT or
TEXT operand.

LOCLENG=operand
Function: Specifies a length to be associated with the LOC operand data.

Note: When LOCLENG is coded, the THEN or ELSE action on an IF statement
is always executed as long as the IF meets the criteria set by the SNASCOPE,
TYPE, and WHEN operands. The string data comparison allows for unequal or
null strings with the shorter string being padded with blanks. The LOCLENG
operand cannot be coded with the CURSOR, EVENT, LOCTEXT, SCAN, and
SCANCNTR operand or used with a test under mask condition.

Format: For the LOCLENG operand, you can code one of the following values:

* Specifies that the length of the LOC operand data is all the data
available in the specified area.

integer Specifies that the length of the LOC operand data is the integer value
(1-32767) specified.

cntr Specifies that the length of the LOC data is the counter specification
value (0-32767) specified.

Default: None.

LOG=(data)
Function: Specifies from 1 to 50 bytes of data to be written in a LOG record to
the log data set when the test is made and the THEN action is taken for this IF
statement.

Note: This operand is valid only if a THEN operand is also specified on the
same IF statement.

Format: 1 to 50 bytes of EBCDIC data enclosed within the text delimiter
specified on the MSGTXT statement. To enter a single quote or a text delimiter
as data, enter two of the characters. You cannot continue this data to another
statement. Also, you cannot code data field options for this operand.

Default: None.

RESP=NO
Function: Specifies that if the THEN action is taken for this IF statement,
WSim will not generate an automatic SNA response for this message. Instead,

Chapter 8. Defining the message generation deck 157

WSim will set up the TH and RH for the normal response and go to message
generation to get the response data from the message generation deck. The
largest response that can be built is 256 bytes long. A response will always be
sent after returning from message generation.

This operand is valid only if a THEN operand is also specified on the same IF
statement. This operand is invalid on IF statements which specify
WHEN=IMMED.

Note: This operand is ignored for non-SNA terminals. However, the THEN
action will be performed for all terminal types. Therefore, code this operand
only on logic tests evaluated for SNA terminals and devices.

Format: NO

Default: None. This operand is optional. If you do not code the RESP operand,
WSim automatically builds the SNA response.

SCAN={YES|value}
Function: Specifies whether or not the data is to be scanned sequentially for
the data specified in the TEXT, AREA, or UTBL operand. When scanning is
specified, the data is searched starting at the location specified in the LOC
operand or at the beginning of the text specified by the LOCTEXT operand.

Note: Using this operand can cause performance degradation.

Format: For the SCAN operand, you can code one of the following values:

YES Specifies that scanning continues until the condition is met or the end
of the data is reached.

value Specifies that scanning continues until the condition is met, the number
of positions specified by value has been scanned, or the end of data is
reached. value can be any integer from 1 to 32767 or a counter
specification whose value is within this range.

The data starting at the location as specified by the LOC or LOCTEXT operand
is scanned and compared with the character string as specified by the TEXT or
AREA operand for LOC or the TEXT operand for LOCTEXT. If data is found
that meets the comparison condition before the specified number of positions
have been scanned, the THEN action is taken. Otherwise, the ELSE action is
taken. If LOCTEXT is coded, padding is not done for the compare.

Default: None. If this operand is omitted, no scanning is performed.

Note: The LOCLENG operand cannot be coded with the SCAN operand.

SCANCNTR=cntr
Function: Specifies a counter to be set to the offset of text data that caused the
logic test condition to be met. If text is being compared and the IF condition is
met, the specified counter is assigned the value of the offset into the save area,
user area, buffer, or data stream which satisfies the condition if the LOC
operand was coded or the value of the offset into the LOCTEXT data if the
LOCTEXT operand was coded. If the IF condition was not met, the value of
the counter is unchanged.

Note: If you code this operand, do not code the CURSOR, EVENT, or
LOCLENG operands. Also, do not code the SCANCNTR operand if the LOC
operand specifies a switch or counter to be tested or the LOCTEXT operand
specifies an integer or counter to be tested. If SCANCNTR and UTBLCNTR are

158 WSim Script Guide and Reference

both coded and the same counter is specified on both operands, the
SCANCNTR operand will take precedence if a match is found.

Format: The value coded for cntr can be any of the counter specifications as
defined by the TEXT operand.

Default: None. This operand is optional.

SNASCOPE={ALL|LOC|REQ|RSP}
Function: Specifies which SNA flows to test for the data specified in the
AREA, TEXT, or UTBL operand.

Format: For the SNASCOPE operand, you can enter one of the following
values:

ALL Specifies that logic testing is to be performed on both SNA request and
response flows.

LOC Specifies that logic testing is to be performed based on the LOC or
LOCTEXT operand specification. See Chapter 10, “Data locations,” on
page 209 for more information.

REQ Specifies that logic testing is to be performed on the SNA request
flows.

RSP Specifies that logic testing is to be performed on the SNA response
flows.

Default: LOC

Note: This operand is ignored for non-SNA devices.

STATUS=HOLD
Function: Specifies that this IF statement is to be held active (the test is made
on each eligible message), until a new path entry (from the PATH statement) is
begun, until the test is overridden by another IF statement with the same
name, or until the IF statement is explicitly deactivated by a DEACT statement.

Format: HOLD

Default: The test is made only until the next message is generated.

TEXT={RESP|cntr|(data)|'xx'|integer}
Function: Specifies the text value for which the test is to be made.

Format: For the TEXT operand, you can enter one of the following values:

RESP The data to be used in the comparison was specified using the RESP
operand on the previous TEXT statement. If no RESP was coded on the
previous TEXT statement, a null value is used for the logic test.

cntr The value of a counter is to be used in the comparison. The valid
values for cntr are NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn, and
DCn, where n is an integer from 1 to 4095. These values are explained
under the LOC operand on this statement. The TEXT operand can
specify a counter value only if the LOC operand specifies a counter
value or the LOCTEXT operand specifies a counter or integer value.

(data) The data coded within the text delimiter specified on the MSGTXT
statement is to be used as the comparison data. The data field options
can be used to specify the data (see Chapter 9, “Data field options,” on
page 199).

When comparing for specified data, enter hexadecimal data within the
text delimiters by enclosing the digits within single quotes. Two digits

Chapter 8. Defining the message generation deck 159

compose one hexadecimal character. For example, TEXT=(ABC) will
generate a comparison for the three characters ABC. TEXT=('AB'CD) is
a comparison for three bytes including one hexadecimal character of
AB and two EBCDIC characters of CD. A maximum of 32767
characters will be used for comparison.

To enter a single quote, text delimiter (TXTDLM), or data field option
control character (CONCHAR) as data, enter two of the characters. You
can also continue the data on the next line.

'xx' A test under mask on a byte of the data is executed using the mask
specified by two hexadecimal digits within single quotes. The bits of
the mask correspond one for one with the bits of the byte of data. A
mask indicates that the corresponding bits in the byte of data are
tested. If all bits tested are set to one, the THEN action is taken.
Otherwise, the ELSE action is taken.

integer A 1- to 10-digit integer ranging from 0 to 2147483647 is to be used for
the comparison. This format is valid when the LOC operand specifies a
counter value or the LOCTEXT operand specifies a counter or integer
value. The value will be compared to this text numeric value.

Default: None. Either the TEXT, AREA, or UTBL operand is required for all
tests except when the LOC operand is specified for switch testing or the
EVENT operand is specified. You cannot code the TEXT operand when the
LOC operand specifies switch testing or when the AREA or LENG operand is
coded.

THEN=action
Function: Specifies the action to be taken if the specified condition was met,
the switches tested were on, or the tested event was complete.

When you omit the THEN operand and the test condition is met, no action is
taken (all indicators and message generation paths are left as they were before
the IF statement was encountered). Also when you omit the THEN operand,
you cannot code the DATASAVE, DELAY, LOG, and RESP operands for the IF
statement.

Format: For the THEN operand, you can code one of the following options:

Bname-label CONT NSW(ON) SW(ON)
Bname WAIT NSW(OFF) SW(OFF)
B-label NSWn(ON) SWn(ON)
Cname-label QUIESCE NSWn(OFF) SWn(OFF)
Cname RELEASE
C-label TSW(ON) WAIT(event)
Ename-label RETURN TSW(OFF) POST(event)
Ename IGNORE TSWn(ON) RESET(event)
E-label ABORT TSWn(OFF) SIGNAL(event)

QSIGNAL(event)
VERIFY[-(data)]

The following list describes the options:

Option Description

-label Specifies a label of a statement within the message generation deck.

name Specifies the name of the message generation deck that is the branch
target.

160 WSim Script Guide and Reference

name-label
Specifies a label in the named message generation deck.

ABORT
Causes the current message generation deck to be aborted, any active
logic tests to be deactivated, and the next message generation deck to
be selected according to normal PATH selection rules.

B Specifies a branch to another location within the message generation
deck. -label specifies the label of a statement within the current message
generation deck. name specifies the name of the message generation
deck that is the branch target. name-label specifies a label in the named
message generation deck.

C Specifies a call to another location within the message generation
decks. -label specifies the label of a statement within the current
message generation deck. name specifies the name of the message
generation deck that is the call target. name-label specifies a label in the
named message generation deck. Call differs from branch in that a
return pointer is saved to allow message generation to return to the
point of the call.

CONT
Specifies that message generation is to continue in the current message
generation deck.

DLYCNCL
Cancels any active or pending intermessage delay.

E Specifies an immediate execution of the statements beginning at the
specified message generation deck location. -label specifies the label of
a statement within the current message generation deck. name specifies
the name of the message generation deck that is the execute target.
name-label specifies a label in the named message generation deck. The
statement types that can be executed with this action are BRANCH,
CALC, CANCEL, DATASAVE, DEACT, EVENT, IF (other than
WHEN=IMMED), LABEL, LOG, MONITOR, MSGTXT, ON, OPCMND,
SET, SETSW, SETUTI, WTO, and WTOABRHD. Execution stops when
any other statement type is encountered. This action is separate from,
and does not affect, the normal message generation flow and does not
reset the WAIT indicator. It takes place before the evaluation of any
subsequent IF statements. It does not affect taking subsequent actions,
and may itself be taken regardless of whether any other action has
already been taken.

IGNORE
Specifies that no action is to take place. In addition, no other actions of
the same class, such as WAIT, CONT, RETURN, will take place for the
message being tested, even if a subsequent logic test condition is met.

NSW(ON)
Sets all network switches on, up to the maximum number referenced.

NSW(OFF)
Clears all network switches, up to the maximum number referenced.

NSWn(ON)
Sets the indicated network switch, where n is an integer from 1 to
4095.

Chapter 8. Defining the message generation deck 161

NSWn(OFF)
Clears the indicated network switch, where n is an integer from 1 to
4095.

POST(event)
Specifies that the named event is to be posted.

QSIGNAL(event)
Specifies that the named event is to be signaled but only for the device
which issued the QSIGNAL.

QUIESCE
Prohibits message generation until a release operation is performed. A
quiesced device can receive messages and respond negatively to polls
but cannot generate any data messages.

RELEASE
Specifies that a quiesced device is to proceed in message generation.

RESET(event)
Specifies that the named event is no longer to be considered posted.

RETURN
Specifies a return to message generation after the point of the last call.
If no CALL statements have been issued, a message trace (MTRC)
record is written to the log data set and the action is ignored.

SIGNAL(event)
Specifies that the named event is to be signaled.

SW(ON)
Sets all device switches on, up to the maximum referenced number.

SW(OFF)
Clears all device switches, up the the maximum referenced number.

SWn(ON)
Sets the indicated switch for the device, where n is an integer from 1 to
4095.

SWn(OFF)
Clears the indicated switch for the device, where n is an integer from 1
to 4095.

TSW(ON)
Sets all terminal switches on, up to the maximum referenced number.

TSW(OFF)
Clears all terminal switches, up to the maximum referenced number.

TSWn(ON)
Sets the indicated switch for the terminal, where n is an integer from 1
to 4095.

TSWn(OFF)
Clears the indicated switch for the terminal, where n is an integer from
1 to 4095.

VERIFY[-(data)]
Causes a VRFY log record to be logged on the log data set for this
network. If data is coded, it will be included in the VRFY log record.
The value coded for data can be one or more characters enclosed
within the text delimiters specified on the MSGTXT statement.
Although data may be longer than 50 characters, no more than 50

162 WSim Script Guide and Reference

character will be included in the VRFY log record. To enter a single
quote or text delimiter as data, enter two of the characters. You can
continue the data and include data field options (see Chapter 9, “Data
field options,” on page 199).

The Loglist Utility (refer to , SC31-8947) can format these VRFY log
records into Verification Reports.

WAIT Prohibits message generation.

WAIT(event)
Specifies that the named event is to be posted before further messages
can be generated.

When a BRANCH, CALL, RETURN, QUIESCE, RELEASE, or CONT action is
taken, the WAIT condition is reset to OFF. However, this does not reset the
event wait condition.

Refer to , SC31-8945 for more information on actions executed when multiple
IF statements are coded.

The event name specified in WAIT(event), POST(event), SIGNAL(event),
QSIGNAL(event), and RESET(event) can either be explicitly coded as a name
(up to eight alphanumeric characters) or can reference a save area or user area.
These are specified as:
v N±value

v Ns+value

v U±value

v s+value

Reference the EVENT statement or EVENT operand for more information on
these operand values.

Default: None. You must code either the THEN or ELSE operand.

TYPE=type
Function: Specifies the type of terminal for which this IF statement is to be
evaluated.

Format: For the TYPE operand, you can code one of the following terminal
and device types:

LU0 LU1 LU2 LU3 LU4
LU6 LU62 LU7 FTP TN3270
TN3270E TN3270P TN5250 TNNVT STCP
SUDP

UTBL=name
Function: Specifies the number of the user table, as defined by a UTBL
statement or the name coded on the MSGUTBL statement, containing the
entries to be compared with the data defined by the LOC or LOCTEXT
operand.

Note: If you code this operand, do not code with the AREA, EVENT, LENG,
and TEXT operands. Also, do not code the UTBL operand if the LOC operand
specifies a counter or switch to be tested or the LOCTEXT operand specifies a
counter or integer value to be tested.

Chapter 8. Defining the message generation deck 163

Format: An integer from 0 to 255 or from one to eight alphanumeric characters
and the first character must be alphabetic.

Default: None. This operand is optional.

UTBLCNTR=cntr
Function: Specifies a counter to be set to the index of the user table entry that
caused the logic test condition to be met. If the logic test condition was not
met, the value of the counter is unchanged.

Note: If you code this operand, do not code the AREA, EVENT, LENG, and
TEXT operands. Also, do not code the UTBLCNTR operand if the LOC
operand specifies a counter or switch to be tested or the LOCTEXT operand
specifies a counter or integer value to be tested. If SCANCNTR and
UTBLCNTR are both coded and the same counter is specified on both
operands, the SCANCNTR operand will take precedence if a match is found.

Format: The value coded for cntr can be any of the counter specifications as
defined by the TEXT operand. The index of the first entry in a user table is
zero.

Default: None. This operand is optional.

WHEN={IMMED|IN|OUT}
Function: Specifies when the logic test is to be evaluated.

Format: For the WHEN operand, you can code one of the following values:

IMMED
Specifies that the logic test will be evaluated immediately during
message generation processing.

Note: If you specify WHEN=IMMED, do not code the DELAY, RESP,
and DATASAVE operands.

IN Specifies that the logic test will be evaluated when data is received by
WSim.

OUT Specifies that the logic test will be evaluated when data is transmitted
by WSim.

IF statements that specify WHEN=IN or WHEN=OUT are ignored for CPI-C
simulations.

Default: IN

INSERT - insert statement

[name] INSERT

Function

The INSERT statement simulates the 3270 INSERT key operation. Screen data will
be shifted right on the simulated screen as the TEXT data is inserted. This
statement is a delimiter in some cases.

164 WSim Script Guide and Reference

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Note: Text data will be truncated and a message will be written to the log if
there is not enough space in the data entry field of the screen to contain the
inserted text.

JUMP - jump key statement

[name] JUMP [PID=nn]

Function

The JUMP statement simulates the Jump key on a 3270 display terminal. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

PID=nn
Function: Specifies the partition identification number (PID) of the partition to
be made active with the JUMP statement.

Format: For the PID operand, nn can be an integer from 0 to 15.

Default: None. This operand is optional.

Note: When you code the JUMP statement without the PID operand, the next
sequential partition becomes active.

LABEL - label statement

name LABEL

Function

The LABEL statement establishes a label in a message generation deck to be used
for a branch or call operation.

Chapter 8. Defining the message generation deck 165

Where

name
Function: Specifies a name to be used when branching with logic tests or
branching from the BRANCH and CALL statements.

Format: From one to eight alphanumeric characters.

Default: None. This field is required.

LCLEAR - local clear statement

[name] LCLEAR

Function

The LCLEAR statement simulates the Local Clear key on a display device. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

LOG - write data to log statement

[name] LOG {(data)}
{AREA=area[,LENG=value]}
{BLOCK=name}
{DISPLAY}

Function

The LOG statement writes the user-specified data, data areas or control blocks, or
the 3270 or 5250 display to the log data set for formatting by the Loglist Utility.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data)
Function: Defines the data to be written in a message to the log data set.

Note: If you code this operand, it must be the only operand in the LOG
statement.

166 WSim Script Guide and Reference

Format: You can code any amount of data for this operand, but a maximum of
32767 characters of user data will actually be written to the log data set. The
data is enclosed by the text delimiting character specified on the MSGTXT
statement (the default is left and right parentheses). You can also continue the
data. However, if a single delimiting character is detected in column 71, it
indicates the end of the operand and data past column 71 is ignored.

You can use the data field options. (See Chapter 9, “Data field options,” on
page 199.) Enter hexadecimal data by enclosing the digits within single quotes.
To enter a single quote, the special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, enter two of the characters. If you
enter two text delimiting characters, they must be on the same statement (no
continuation between the characters).

Default: None. If no data is entered, a null message will be logged.

AREA=area
Function: Specifies that a portion of a save area or user area is to be written to
the log data set beginning with the specified offset.

Format: For the AREA operand, you can code one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

N±value
Specifies the area to be written at an offset from the start (+value) or
back from the end (-value) of the network user area.

U±value
Specifies the area to be written at an offset from the start (+value) or
back from the end (-value) of the device user area.

Ns+value
Specifies the area to be written at an offset from the start of the
network save area, where s is the network save area and can be any
integer from 1 to 4095.

s+value
Specifies the area to be written at an offset from the start of the device
save area, where s is the device save area and can be any integer from
1 to 4095.

Default: None. This operand is optional.

BLOCK=name
Function: Specifies the name of a control block or data area to be written to
the log data set.

Note: If you code the BLOCK operand, it must be the only operand in the
LOG statement.

Format: For the BLOCK operand, you can code one of the following keywords:

CNT Sequence and index counters

DEV Device or logical unit control block

NCB Network control block

SCR Screen image for displays

SWS Switches

Chapter 8. Defining the message generation deck 167

TRM Terminal control block

Default: None. This operand is optional.

DISPLAY
Function: Specifies that the display buffers are to be written to the log data set
for formatting by the loglist program.

Note: If you code the DISPLAY operand, it must be the only operand on the
LOG statement. The DISPLAY operand is valid only for 3270 and 5250
terminals.

Format: DISPLAY

Default: None. This operand is optional.

LENG=value
Function: Specifies the length of the data to be logged.

Note: The LENG operand is valid only if you also code the AREA operand.

Format: value can be an integer from 1 to 32767 or a counter specification
whose value is within this range.

Default: The length from the offset specified by AREA to the end of the data in
the save area or to the end of the user area.

MONITOR - monitor statement

[name] MONITOR

Function

The MONITOR statement causes the Display Monitor Facility to display the
simulated 3270 display image, as it exists at this point in the message generation
process, on the display monitoring this device, if any. The UPDATE=MONITOR
option must be in effect when starting the monitor facility. Refer to , SC31-8948 for
more information about display monitor facility. This statement is valid for 3270
simulation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

MSGTXT - message generation deck begin statement

name MSGTXT [,CONCHAR={char|$}]
[,COUNT={integer|1 }]
[,PAD=digits]
[,STLMEM=membername]
[,TXTDLM=char]

168 WSim Script Guide and Reference

Function

The MSGTXT statement performs the following functions:
v Defines the start of a message generation deck
v Specifies the control character used to delimit the data fields in this deck
v Specifies the control character used to delimit the data field options in this deck
v Specifies the number of times this deck will be executed before another deck is

selected during message generation
v Specifies a character to be used in padding generated messages to a desired

length

Where

name
Function: Specifies the name by which this message generation deck can be
referenced. The name should be different from all other message generation
decks.

Format: A 1- to 8-character name conforms to JCL member naming
conventions.

Default: None. This field is required.

CONCHAR={char|$}
Function: Specifies the control character to be used as a delimiter for the data
field options. See Chapter 9, “Data field options,” on page 199 for descriptions
of the data field options and explanations of where they can be used.

Format: A single EBCDIC character. However, you cannot use a comma,
parenthesis, quote, or blank for this character.

Default: $

Note: The values coded on TXTDLM and CONCHAR operands must be
different characters.

COUNT={integer|1}
Function: Specifies the number of times this message generation deck will be
processed successively during message generation.

Note: This operand is ignored for any message generation deck that is being
executed because of a BRANCH or CALL command to the deck.

Format: An integer from 1 to 255.

Default: 1

PAD=digits
Function: Specifies the character to be used as a pad character for padding text
messages to the desired length. When you code this operand, the normal
alphabetic pad sequence is replaced with this character. For more information,
see the LENG operand on the TEXT statement.

Format: Two hexadecimal digits enclosed in single quotes.

Default: The message will be padded with the alphabetic sequence
(ABCDEF...).

Chapter 8. Defining the message generation deck 169

STLMEM=membername
Function: Specifies the name of a special member of the MSGDD data set used
by the STL trace facility.

Format: From one to eight alphanumeric characters.

Default: None.

Note: This operand is automatically generated by the STL translator and
should not normally be coded.

TXTDLM=char
Function: Specifies the delimiting character to be used for text data on the
TEXT, IF, CMND, WTO, LOG, DATASAVE, and OPCMND statements and
PARM on the operand of the EXIT statement in the current message generation
deck.

Format: A single EBCDIC character. However, you cannot code a comma,
parenthesis, quote, or blank as the character. To use the delimiter as a data
character, code two delimiters together.

Default: A left parenthesis, “(”, to indicate the beginning of the text data and a
right parenthesis, “)”, to indicate the end of the text data.

Note: The values coded for TXTDLM and CONCHAR operands must be
different characters.

MSGUTBL - user data table (Member) statement

name MSGUTBL (entry)[,...]

Function

The MSGUTBL statement defines a set of user data entries to be maintained as a
member of a partitioned data set. This statement can be arranged in any order
with the message generation decks, and is processed before the message generation
decks by the WSim initiator.

The MSGUTBL statement is unique in that it is not a part of the network
configuration definition or the message generation deck definition. It is
syntactically equivalent to an entire message generation deck definition (MSGTXT
... ENDTXT).

All MSGUTBL statements must follow the network configuration statements or be
previously stored in the partitioned data set named by the MSGDD DD statement.
Whether a member is assumed to be a message generation deck or an MSGUTBL
deck is determined by the first use of the member name in the network definition.

name
Function: Specifies the member name to be used to identify this table.

Note: MSGUTBL members and message generation decks reside in the same
data set. Consequently, all MSGUTBL and MSGTXT names must be unique.

Format: From one to eight alphanumeric characters.

Default: None. This name is required.

170 WSim Script Guide and Reference

(entry)
Function: Specifies the user data that can be referenced during message
generation processing.

Format: Any amount of data enclosed in parentheses. However, it may be
truncated during message generation. To enter hexadecimal data, enclose the
digits between single quotes. To enter single quotes or parentheses in the data,
enter two of the characters. You can continue the data by entering the data
through column 71 and then starting in column 2 of the next statement, or by
using the “+” continuation character.

Default: None. You must code at least one entry.

Note: The maximum number of entries is 2147483647.

NL - new line key statement

[name] NL

Function

The NL statement simulates the action of the New Line key on a display device.
The NL statement is valid for 3270 and 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ON - on statement

[name] ON EVENT=event,THEN=action

Function

The ON statement sets up an action to be taken when a named event is signaled.

Note: If an ON statement is encountered which specifies the same event and action
as a currently active ON statement for this terminal, the new statement is ignored.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Chapter 8. Defining the message generation deck 171

EVENT=event
Function: Specifies the name of the event that must be signaled to initiate the
action specified by this ON statement.

Format: For the EVENT operand, you can code one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

name Specifies the name of the event, where name is one to eight
alphanumeric characters.

N±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

Ns+value
Specifies an event name to be referenced at an offset from the start of
the network save area where s is the network save area and can be any
integer from 1 to 4095.

s+value
Specifies an event name to be referenced at an offset from the start of
the device save area where s is the device save area and can be any
integer from 1 to 4095.

Note: You can use N±value, U±value, Ns+value, and s+value for variable event
names. The first eight bytes of data beginning at the offset (value) comprise the
name. For the network and device user area, code the name and then pad with
blanks if the length of the name is less than eight. If the area does not exist or
no data is present, the name will consist of eight blanks. Because no validity
checking is performed on the name, you can use a name that cannot be
expressed as EBCDIC characters. You can put the name to be referenced into
the save area or user area with a DATASAVE statement.

Default: None. This operand is required.

THEN=action
Function: Specifies an action to be taken when the event associated with this
ON statement is signaled.

Format: Any of the actions that can be specified on the THEN and ELSE
operands of the message generation deck IF statement can be specified here.
See “IF - message generation deck logic test statement” on page 150.

Note: ON conditions, unlike message generation deck IF statements, are not
deactivated when processing a new PATH entry begins. They remain active
until explicitly deactivated or until deactivated as a result of the condition
having been signaled.

Default: None. This operand is required.

172 WSim Script Guide and Reference

OPCMND - operator command statement

[name] OPCMND (data...)

Function

The OPCMND statement specifies an operator control command to be executed by
the simulated device. The operator control command is not executed until WSim
leaves this pass through message generation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data...)
Function: Defines the operator command to be entered from the message
generation deck. For example,
OPCMND (ZEND)

executes the ZEND operator command. Refer to , SC31-8948 for details of the
various operator commands.

Note: You can execute all operator commands with the OPCMND statement,
with the exception of console recovery subcommands, which must be entered
by the system console operator.

You can enter any amount of data for this operand, but a maximum of 120
characters will actually be passed to the console routines.

Format: The data must be EBCDIC and must be enclosed by the text delimiting
character specified on the MSGTXT statement, (the default is left and right
parentheses).

You can use the data field options defined in Chapter 9, “Data field options,”
on page 199. To enter a single quote, the special control character
(CONCHAR), or a text delimiting character (TXTDLM) as data, enter two of
the characters. If you enter two text delimiting characters, they must be on the
same statement (no continuation between the characters).

If necessary, you can continue the data on the next line using the standard
continuation methods. However, if a single text delimiting character is detected
in column 71, it indicates the end of the operand, and any data after column 71
is ignored.

Default: None. At least one data character is required.

PA - program access key statement

[name] PAn

Chapter 8. Defining the message generation deck 173

Function

The PA statement simulates the action of one of the three Program Access keys on
a display device. This statement is valid for 3270 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

PAn
Function: Specifies which Program Access key is to be simulated, where n is
the number of the key.

Format: n is an integer between one and three.

Default: None. You must specify a key to be simulated.

PF - program function key statement

[name] PFn

Function

The PF statement simulates the action of one of the 24 Program Function keys on a
display device. This statement is valid for 3270 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

PFn
Function: Specifies which of the 24 Program Function keys is to be simulated,
where n is the number of the key.

Format: n is a 1- to 2-digit number between 1 and 24.

Default: None. You must specify a key to be simulated.

PRINT - print key statement

[name] PRINT

174 WSim Script Guide and Reference

Function

The PRINT statement simulates the action of the Print key on a 5250 display
device. This statement is valid only for 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

PUSH - push statement

PUSH string [TO queue_name]

Function

The PUSH statement places string on queue_name on a last-in-first-out (LIFO) basis.

Where

string
Function: Specifies a string to be placed on a queue.

Format: From one to 32767 alphanumeric characters.

Default: None. If no data is entered a null message is queued.

queue_name
Function: Specifies a name of a queue.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

QUEUE - queue statement

QUEUE string [TO queue_name]

Function

The QUEUE statement places string to queue_name on a first-in-first-out (FIFO)
basis.

Where

string
Function: Specifies a string to be added to a queue.

Format: From one to 32767 alphanumeric characters.

Default: None. If no data is entered a null message is queued.

Chapter 8. Defining the message generation deck 175

queue_name
Function: Specifies a name of a queue.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

QUIESCE - quiesce statement

[name] QUIESCE

Function

The QUIESCE statement stops message generation and quiesces the device. This
statement is an unconditional delimiter.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

RESET - reset key statement

[name] RESET

Function

The RESET statement simulates the action of the Reset key on a display device.
This statement is valid for 3270 simulation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

RESP - SNA response statement

[name] RESP SENSE=’xxxxxxxx’

176 WSim Script Guide and Reference

Function

The RESP statement provides for logical error simulation by SNA devices. It
overrides the normal SNA response that WSim would transmit with an exception
response containing user-specified sense data. This statement is valid only for SNA
simulation, excluding CPI-C simulation.

Note: WSim will respond with an exception response to the next request received
from the system under test.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

SENSE='xxxxxxxx'
Function: Specifies the sense data to be included with the exception response
being simulated.

Format: Eight hexadecimal digits enclosed in single quotes.

Default: None. This operand is required.

RETURN - return from subroutine statement

[name] RETURN

Function

The RETURN statement restarts message generation processing at the point where
the last CALL statement or logic test call was issued. This statement is ignored if
no call is outstanding.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Chapter 8. Defining the message generation deck 177

RH - request/response header statement

[name] RH [BB={ON|OFF}]
[,CHAIN={FIRST|MIDDLE|LAST|ONLY}]
[,CDI={ON|OFF}]
[,CEB={ON|OFF}]
[,DR1={ON|OFF}]
[,DR2={ON|OFF}]
[,EB={ON|OFF}]
[,EDI={ON|OFF}]
[,EXC={ON|OFF}]
[,FMI={ON|OFF}]
[,PACE={ON|OFF}]
[,QRI={ON|OFF}]
[,RESP={ON|OFF}]
[,SNI={ON|OFF}]
[,TYPE={DFC|FM|NC|SC}]

Function

The RH statement performs the following functions:
v Modifies the SNA request/response header built by WSim for a message

generated with a TEXT statement
v Builds an RH for a user-specified command defined by a CMND statement
v Optionally specifies chaining of transmitted messages.

You must code the RH statement after the TEXT or CMND statement for which the
RH is to be modified. This statement is valid only for non—CPI-C SNA simulation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

CHAIN={FIRST|MIDDLE|LAST|ONLY}
Function: Specifies the setting of the chaining control flags in the RH.

Format: For the CHAIN operand, you can code one of the following keywords:

FIRST First RU of chain

MIDDLE
Middle RU of chain

LAST Last RU of chain

ONLY Only RU of chain.

Note: If CHAIN=FIRST is coded, CDI=OFF and EXC=ON are assumed unless
otherwise specified.

Default: None. This operand is optional.

TYPE={DFC|FM|NC|SC}
Function: Specifies the type of request being built.

178 WSim Script Guide and Reference

Format: For the TYPE operand, you can code one of the following keywords:

DFC Data flow control

FM FM data

NC Network control

SC Session control.

Default: None. This operand is optional.

The following operands are described as a group because they all have only ON
and OFF as valid options. The definition of each keyword gives the meaning of the
specified RH bit when the bit is set ON. ON indicates the specified bit value will
be B'1' and OFF indicates the bit value will be B'0'.

BB Set begin bracket.

CDI Set change direction.

CEB Set conditional end bracket.

DR1 Definite response 1 requested.

DR2 Definite response 2 requested.

EB Set end bracket.

EXC Exception response requested.

FMI The RU is formatted.

QRI Set the queued response indicator.

RESP The data is a response.

SNI The RU contains sense data.

This is how the RH statement maps to SNA Formats bits:

WSim SNA Terminology

BB BBI

CDI CDI

CEB CEBI

DR1 DR1I

DR2 DR2I

EB EBI

EXC ERI/RTI 6

FMI FI

QRI QRI

RESP RRI

SNI SDI

6. The ERI and RTI bits are the same bit.

Chapter 8. Defining the message generation deck 179

ROLLDOWN - rolldown key statement

[name] ROLLDOWN

Function

The ROLLDOWN statement simulates the action of the Roll Down key on a 5250
display device. This statement is valid only for 5250 simulation. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

ROLLUP - rollup key statement

[name] ROLLUP

Function

The ROLLUP statement simulates the action of the Roll Up key on a 5250 display
device. This statement is valid only for 5250 simulation.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

SCROLL - scroll key statement

[name] SCROLL {DOWN|UP}

Function

The SCROLL statement simulates the Scroll keys on a 3270 display terminal. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

180 WSim Script Guide and Reference

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

{DOWN|UP}
Function: Specifies whether the displayed data is to be scrolled up or down in
relation to the current viewport.

Format: For the SCROLL statement, you can code one of the following values:

DOWN
Specifies that the data is to be scrolled down.

UP Specifies that the data is to be scrolled up.

Default: None.

SELECT - selector pen detect statement

[name] SELECT [COLUMN={value|1}]
[,OFFSET=value]
[,ROW={value|1}]

Function

The SELECT statement simulates the action of the Selector Pen on a display device.
This statement is valid for 3270 and 5250 simulation. This statement is a delimiter
in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

COLUMN={value|1}
Function: Specifies the column of the character to be detected.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: 1

OFFSET=value
Function: Specifies the location of the character to be detected as an offset from
the beginning of the display buffer, where integer is the offset. If multiple
partitions are defined for a 3270 terminal, the character offset is from the
beginning of the presentation space of the currently active partition.

Format: value can be an integer from 0 to 32766 or a counter specification
whose value is within this range.

Chapter 8. Defining the message generation deck 181

Default: None.

Note: This operand is invalid if COLUMN or ROW is coded.

ROW={value|1}
Function: Specifies the row of the character to be detected.

Format: value can be an integer from 1 to 255 or a counter specification whose
value is within this range.

Default: 1

Note: When multiple partitions are defined for a 3270 terminal, the ROW and
COLUMN specification will reference the display as you would see it, which could
include data from more than one partition. The selection operation will be
performed on the partition that owns the area of the display referenced by the
ROW and COLUMN specification.

SET - set counters statement

[name] SET cntr=option[,...]

Function

The SET statement performs the following functions:
v Alters the values of the sequence and index counters for a simulated device
v Sets a counter to a specified integer, a random number, or the value of another

counter
v Sets the counter to the sum of itself and another counter
v Sets the counter to the difference of itself and another counter
v Sets the counter to the product of itself and another counter
v Sets the counter to the quotient of itself and another counter
v Sets the counter to the remainder of itself and another counter
v Adds to or subtracts from the value of a counter or specified integer
v Multiplies to or divides from the value of a counter or specified integer
v Sets the counter to one or two bytes of hexadecimal data
v Sets the counter to the EBCDIC character representation of a number in data
v Sets the counter to the simulated cursor's current row, column, or offset
v Sets the counter to the index of the last UTBL item
v May alter multiple counters in a single statement
v Sets the counter to the position of the last occurrence of specified data in a save

area
v Sets the counter to the position of the first occurrence of specified data in a save

area
v Sets the counter to the position of the first character in the nth blank-delimited

word in a save area
v Sets the counter to the word number of the first word of specified data found in

a save area
v Sets the counter to the number of blank-delimited words in a save area or a user

area

182 WSim Script Guide and Reference

v Sets the counter to the number of text data items on the queue.

Note: To use the SET statement, you must code at least one operand.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

cntr
Function: Specifies which counter is to be set.

Note: You can set the same counter multiple times with the same SET
statement. If you code multiple operands, the counters will be set in the order
specified.

Format: The valid values for cntr are NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn,
TCn, and DCn, where n is an integer from 1 to 4095. These values represent
the sequence counters and the index counters for the network, line, terminal,
and device levels.

Default: None. You must code a value for cntr.

Notes:

v For VTAMAPPL LU simulation, TSEQ, LSEQ, TCn, and LCn will reference a
single set of counters allocated to each VTAM application (VTAMAPPL).

v For CPI-C transaction program simulation:
– LSEQ and LCn will reference a single set of counters allocated to each

APPC LU.
– TSEQ and TCn will reference a single set of counters allocated to each

transaction program.
– DSEQ and DCn will reference a single set of counters allocated to each

transaction program instance.
v See Chapter 12, “Counters and switches,” on page 213 for valid counter and

switch specifications.
v WSim will allocate index counters (minimum 3) up to the maximum index

counter referenced in a script associated with the network for each level of
counters. For example, if DC4095 and TC77 are the maximum numbered
index counters referenced in a script, all device counters from DSEQ to
DC4095 will be allocated for each device level resource in the network and
all terminal counters from TSEQ to TC77 will be allocated for each terminal
level resource in the network. Only those counters allocated can be altered
or queried.

option
Function: Specifies how the counter is to be set.

Format: For the option, you can code one of the following values:

integer Set the counter to the value specified by integer (0 to 2147483647).

+integer
Set the counter to the sum of its own value and the value specified by
integer (0 to 2147483647).

Chapter 8. Defining the message generation deck 183

-integer
Set the counter to the difference of its own value and the value
specified by integer (0 to 2147483647).

*integer
Set the counter to the product of its own value and the value specified
by integer (0 to 2147483647).

/integer
Divide the counter by the value specified by integer (0 to 2147483647)
and set the counter to the integer quotient resulting from the division.
Division by zero will cause the counter value to be unchanged.
Message ITP468I will be logged indicating the reason for the SET
failure.

//integer
Divide the counter by the value specified by integer (0 to 2147483647)
and set the counter to the remainder resulting from the division. This
operator is also called the modulus operator. Division by zero will
cause the counter value to be unchanged. Message ITP468I will be
logged indicating the reason for the SET failure.

scntr Set the counter to the value of another counter. The values for scntr can
be the same as the values for cntr.

+scntr Set the counter to the sum of cntr and scntr. The values for scntr can be
the same as the values for cntr.

-scntr Set the counter to the difference of cntr and scntr. The values for scntr
can be the same as the values for cntr.

*scntr Set the counter to the product of cntr and scntr. The values for scntr
can be the same as the values for cntr.

/scntr Divide the counter by the value of scntr and set the counter to the
integer quotient resulting from the division. Division by zero will cause
the counter value to be unchanged. Message ITP468I will be logged
indicating the reason for the SET failure. The values for scntr can be
the same as the values for cntr.

//scntr Divide the counter by the value of scntr and set the counter to the
remainder resulting from the division. Division by zero will cause the
counter value to be unchanged. Message ITP468I will be logged
indicating the reason for the SET failure. The values for scntr can be
the same as the values for cntr.

(lo,hi) Set the counter to a random number in the range specified by the lo
and hi values. lo is an integer from 0 to 2147483646 and hi is an integer
from 1 to 2147483647 or counter specifications whose values are within
these ranges. The value for lo must be less than the value for hi.

RNn Set the counter to a random number in the range specified by the RN
statement with label n (0 to 255).

(X,loc,leng)
Set the counter to up to 31 bits of hexadecimal data. loc is the location
of the data. If the specified location does not exist, the counter will not
be changed, and message ITP468I will be logged. Any of the following
locations may be specified:
v B±value

v C±value

184 WSim Script Guide and Reference

v N±value

v Ns+value

v U±value

v s+value

v (row,col)

These location notations are described on the IF statement LOC
operand.

leng is the length of the data to copy in bytes and may be from 1 to 4.
If you specify more than one byte of data and there is only one byte of
data at the specified location, that single byte will be copied. The single
byte is returned in the rightmost byte of the counter.

(E,loc,leng)
Set the counter to a 1- to 10-digit EBCDIC number found in loc, the
location of the data. If the specified location does not exist, the counter
will not be changed, and message ITP468I will be logged. Any of the
following locations may be specified:
v B±value

v C±value

v U±value

v N±value

v Ns+value

v s+value

v (row,col)

These location notations are described on the IF statement LOC
operand.

leng is the length of the numeric field to be translated. Leading,
non-numeric characters (i.e., blanks, alphabetic characters, etc.) will be
ignored. Trailing, non-numeric characters will be truncated. If no
numeric character can be found within the specified text, or if the
numeric field's value is greater than 2147483647, the counter value will
not be changed. In such cases, message ITP468I will be logged. If the
leng specified is longer than the data at the specified location, the
available data will be used. If the leng specified is shorter than the data
at the specified location, the rightmost leng digits are returned and the
rest is truncated.

{CROW|CCOL|COFF}
Set the counter to the current position of the cursor's row, column, or
offset. For 3270 partitioned devices with multiple partitions defined,
the offset returned by the COFF option will represent the cursor offset
from the beginning of the presentation space of the currently active
partition. The values returned by the CROW and CCOL options will be
the actual screen row and column numbers, without regard for
partitions.

LASTPOS(needle_area,haystack_area[,start])
Set the counter to the position of the last occurrence of the data
specified in the needle_area save area within the data specified in the
haystack_area save area. Returns 0 if data in needle_area is the null string
or is not found. By default the search starts at the last character in
haystack_area and scans backward. You can override the default by
specifying start, the position to start the backward scan. start defaults

Chapter 8. Defining the message generation deck 185

to the length of haystack_area if it is not specified or it is larger than the
length of haystack_area. start can be an integer from 1 to 32767 or a
counter specification whose value is within this range.

{NUMROWS|NUMCOLS}
Set the counter to the number of rows or columns on a display screen.

LENG(N|U|Ns|s)
Set the counter to the current length of data in a save area or user area.
The value for s can be an integer from 1 to 4095.

POS(needle_area,haystack_area[,start])
Set the counter to the position of the first occurrence of the data
specified in the needle_area save area within the data specified in the
haystack_area save area. Returns 0 if data in needle_area is the null string
or is not found, or if start is greater than the length of haystack_area. By
default the search starts at the first character in haystack_area. You can
override the default by specifying start, the position to start the search.
start can be an integer from 1 to 32767 or a counter specification whose
value is within this range.

QUEUED([queue_name])
Set the counter to the number of text data items on the queue,
queue_name. queue_name can be specified as either a static one to eight
character alphameric queue name or a save or user area + offset
definition. The default for queue_name is a unique value for each
simulated device.

WORDINDEX(string_area,n)
Set the counter to the position of the first character in the nth
blank-delimited word in the string_area save area. Returns 0 if fewer
than n words are in string_area. n can be an integer from 1 to 32767 or
a counter specification whose value is within this range. n is required.

WORDPOS(phrase_area,string_area[,start])
Set the counter to the word number of the first word in the phrase_area
save area, found in the string_area save area. Returns 0 if phrase_area
contains no words or if the data in phrase_area is not found in
string_area. Multiple blanks between words in either phrase_area or
string_area are treated as a single blank for comparison, otherwise the
words must match exactly. By default, the search starts at the first
word in string_area. You can override the default by specifying start,
the word at which to start the search. start can be an integer from 1 to
32767 or a counter specification whose value is within this range.

WORDS(string_area)
Set the counter to the number of blank-delimited words in the
string_area save area or user area.

UTBLMAX(utblname)
Set the counter to the index of the last item in the UTBL. utblname
specifies the name of an MSGUTBL or the label of a UTBL network
definition statement.

Default: None. You must code a value for option.

Note: If the integer to be subtracted from a counter is greater than the value of
the counter, the subtraction results in wrapping the counter value around the
limit of 2147483647. This applies to other manipulation as well as subtraction.

186 WSim Script Guide and Reference

SETSW - set switches statement

[name] SETSW {NSW[n]|SW[n]|TSW[n]}={ON|OFF}

Function

The SETSW statement sets any or all of the network, terminal, or device switches.
It also clears any or all of the network, terminal, or device switches.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

{NSW[n]|SW[n]|TSW[n]}={ON|OFF}
Function: Specifies the switches that are to be set or cleared.

Format: For the SETSW operand, you can code one of the following values:

NSWn=ON
Specifies that one of the 4095 network switches is to be set on, where n
is the switch number and can be any integer from 1 to 4095.

NSWn=OFF
Specifies that one of the 4095 network switches is to be cleared, where
n is a switch number and can be any integer from 1 to 4095.

NSW=OFF|ON
Specifies that all 4095 of the network switches are to be cleared or set
on.

SWn=ON
Specifies that one of the 4095 device switches is to be set on, where n is
a switch number and can be any integer from 1 to 4095.

SWn=OFF
Specifies that one of the 4095 device switches is to be cleared, where n
is a switch number and can be any integer from 1 to 4095.

SW=OFF|ON
Specifies that all 4095 of the device switches are to be cleared or set on.

TSWn=ON
Specifies that one of the 4095 terminal switches is to be set on, where n
is a switch number and can be any integer from 1 to 4095.

TSWn=OFF
Specifies that one of the 4095 terminal switches is to be cleared, where
n is a switch number and can be any integer from 1 to 4095.

TSW=OFF|ON
Specifies that all 4095 of the terminal switches are to be cleared or set
on.

Default: None. This operand is required.

Chapter 8. Defining the message generation deck 187

Notes:

v For VTAMAPPL LU simulation, TSW will reference a single set of switches
allocated to each VTAM application (VTAMAPPL).

v For CPI-C transaction program simulation, TSW will reference a single set of
switches allocated to each transaction program, and SW will reference a
single set of switches allocated to each transaction program instance.

v WSim will allocate switches (minimum 32) up to the maximum switch
referenced in a script associated with the network for each level of switches.
For example, if SW4095 and TSW77 are the maximum switches referenced in
a script, 4095 device switches will be allocated for each device level resource
in the network and 77 terminal switches will be allocated for each terminal
level resource in the network. Only those switches allocated can be Altered
or Queried.

SETUTI - set UTI statement

[name] SETUTI UTI=uti

Function

The SETUTI statement alters the active UTI for a simulated device. This UTI is
active until another SETUTI is encountered, or ENDTXT is processed.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

UTI=uti
Function: Specifies which UTI is to be used as the active UTI. uti must
reference a UTI statement defined within the network configuration portion of
the network or “NTWRKUTI”, which references the network-level UTI.

Format: From one to eight alphanumeric characters.

Default: None. This field is required.

STOP - stop statement

[name] STOP

Function

The STOP statement acts as an unconditional delimiter. It does not set the terminal
wait indicator. The STOP statement unconditionally interrupts the message
generation process for a particular terminal. It does not render the terminal
inactive, nor does it stop WSim execution.

188 WSim Script Guide and Reference

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

STRIPE - magnetic stripe reader input statement

[name] STRIPE (data)

Function

The STRIPE statement defines message data to be transmitted to the system under
test by a magnetic stripe reader. This statement is valid for 3270 simulation. This
statement is a delimiter in some cases.

Note: The STRIPE statement will be ignored for non-display devices.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data)
Function: Defines the secure data to be input to the display device. A field
attribute is generated at the position of the cursor as long as it is an
unprotected character location. The operator cannot alter the data. It will be
sent to the host in a Read Modified operation when the next delimiter
statement in the deck is encountered.

Format: You can code up to 125 characters for this statement. If you code more
than 125 characters, the extra characters will be truncated. The data is enclosed
by the text delimiting character specified on the MSGTXT statement (the
default is left and right parentheses).

You can code the data field options (see Chapter 9, “Data field options,” on
page 199). Enter hexadecimal data by enclosing the digits within single quotes.
To enter a single quote, the special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, enter two of the characters. If two text
delimiting characters are entered, they must be on the same statement (no
continuation between the characters). You can continue the data on the next
line.

Default: None.

Chapter 8. Defining the message generation deck 189

SYSREQ - system request statement

[name] SYSREQ

Function

The SYSREQ statement simulates the action of the SYSREQ key on a Telnet device.
This statement is valid for non—CPI-C SNA simulations. This statement is a
delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

TAB - tab key statement

[name] TAB

Function

The TAB statement simulates the action of the Tab key on a display device. This
statement is valid for 3270 simulation. This statement is a delimiter in some cases.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

TEXT - generate text statement

[name] TEXT [(data)]
[,LENG={integer|(lo,hi)|RNn|cntr}]
[,LOG={byte|Ns+value|s+value|N±value|U±value|00}]
[,MORE={YES|NO}]
[,RESP=(data)]

Function

The TEXT statement:

190 WSim Script Guide and Reference

v Defines message data to be transmitted to the system under test by the
simulated device

v Specifies a byte of data to be associated with the generated message when it is
written to the log data set

v Specifies data to be used in a comparison with a response message received
from the system under test.

Notes:

v This statement is a conditional delimiter.
v TEXT statements are ignored for CPI-C simulations.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data)
Function: Defines the data to be entered into the terminal buffer. This data will
be placed into the terminal buffer following any possible headers (such as TH,
RH, and SDLC headers) required in the buffer.

Format: You can code any amount of data for this operand. The data is
enclosed by the text delimiting character specified on the MSGTXT statement
(the default is left and right parentheses).

You can code the data field options (see Chapter 9, “Data field options,” on
page 199). Enter hexadecimal data by enclosing the digits within single quotes.
To enter a single quote, the special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, enter two of the characters. If two text
delimiting characters are entered, they must be on the same statement (no
continuation between the characters).

You can continue the data on the next line. However, if a single text delimiting
character is detected in column 71, it indicates the end of the operand, and any
data after column 71 is ignored.

Default: If no data is entered and LENG is coded, the message generated
consists of the alphabet repeated to make up the requested length.

LENG={integer|(lo,hi)|RNn|cntr}
Function: Specifies the length of the message to be generated.

If the length is longer than the length of data entered, the message is padded
with the operand corresponding to the PAD keyword on the MSGTXT
statement or alphabetic characters, if the PAD operand is not coded (such as
ABCDEF). If the data entered is longer than the LENG value, the message is
truncated on the right to the value specified. If the data entered is longer than
the terminal or device buffer size, the following takes place:
1. The data is truncated to the terminal buffer size specified by the BUFSIZE

parameter on the NTWRK, TCPIP, VTAMAPPL, or APPCLU statement.
2. Informational message ITP404I is written to the log data set.

Format: For the LENG operand, you can code one of the following values:

integer An integer from 1 to 32767.

Chapter 8. Defining the message generation deck 191

(lo,hi) A random number in the range specified by the lo and hi values, where
lo is an integer from 0 to 32766 and hi is an integer from 1 to 32767 or
counter specifications whose values are within these ranges. The value
coded for lo must be less than the value coded for hi.

RNn A random number in the range specified by the RN statement with
label n (0 to 255).

cntr Valid values for cntr are NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn,
and DCn, where n is an integer from 1 to 4095. These values represent
the sequence counters and the index counters for the network, line,
terminal, and device levels.

Note: For LENG=cntr, if the value of the counter is 0, LENG is not
taken into account. If the counter value is greater than 32767, the value
is used according to the BUFSIZE specified.

Default: If LENG is omitted, the message generated is equal to the amount of
data entered.

LOG={byte|Ns+value|s+value|N±value|U±value|00}
Function: Specifies a single byte of data to be included in the message log
header for this data transmission and for all records for this device until the
next TEXT or CMND statement is generated.

Format: For the LOG operand, you can enter one of the following options. The
value for value can be any integer from 0 to 32766 or a counter specification
whose value is within this range. Zero is the offset to the first byte of the field.

byte One byte of data. If this byte is a single EBCDIC character, the EBCDIC
character is logged. If this byte is two hexadecimal digits, the two
digits are logged.

Ns+value
Specifies an offset into a network save area, where s is the number of
the network save area and is an integer from 1 to 4095.

s+value
Specifies an offset into a device save area, where s is the number of the
device save area and is an integer from 1 to 4095.

N±value
Specifies an offset into a network user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

U±value
Specifies an offset into a device user area, where +value is the offset
from the start of the user area and -value is the offset back from the
end of the user area.

Note: If an area has been specified and its length is longer than one byte, the
first byte is used. If the area contains no data or value specifies an offset that is
outside the area, X'00' is used for the log byte and an informational message is
logged.

Default: A hexadecimal 00 will be logged.

Note: The loglist program (ITPLL) will cause both representations (EBCDIC
and hexadecimal) of the log character to be printed on the formatted log report

192 WSim Script Guide and Reference

under the heading USER DATA. The log byte is reset by the detection of a
TEXT or CMND statement during message generation.

MORE={YES|NO}
Function: Specifies that the next TEXT statement is not to be interpreted as a
delimiter, but rather as a concatenation onto the current TEXT statement(s).

Format: YES or NO.

Default: NO

RESP=(data...)
Function: Specifies the text data to be used for comparison with a message
when an IF statement is encountered with the TEXT=RESP operand, assuming
that the IF statement is active for the message.

Format: You can code a maximum of 25 characters for the RESP operand, but
you must enter at least one byte of data enclosed by the text delimiting
character specified on the MSGTXT statement (the default is left and right
parentheses).

Enter hexadecimal data within the text delimiting characters by enclosing the
digits within single quotes. To enter a single quote or a text delimiting
character (TXTDLM) as data, enter two of the characters.

Note: The data enclosed in text delimiting characters may not be continued.
The data field options are not valid for this operand.

Default: None. This operand is optional.

TH - transmission header statement

[name] TH [,SNF=integer]

Function

The TH statement modifies the SNA transmission header built by WSim for a
message generated with a TEXT statement. It also builds a TH for a user-specified
command defined by a CMND statement. The TH statement must follow the TEXT
or CMND statement for which the TH is to be modified. This statement is valid for
SNA simulation, except for 3270 SNA, 5250 terminals, and CPI-C transaction
programs.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

SNF=integer
Function: Indicates the transmission header sequence number field is to be set.

Note: The sequence number field will be changed and can cause an error in
the access method of the system under test.

Chapter 8. Defining the message generation deck 193

Format: An integer from 0 to 65535.

Default: None. This operand is optional.

WAIT - wait for response statement

[name] WAIT [{EVENT=event}]
[{TIME={ssssssss}

{cntr}
{A(integer)}
{F(integer)}
{R(value1[,value2])}
{T(integer)}}]

[{,UTI=uti}]

Function

The WAIT statement simulates the action of a terminal operator waiting for a reply
before entering the next message. This statement can specify an event that must be
posted complete before further messages can be generated, or it can specify a delay
to be observed until a reply is received or the delay expires. This statement is an
unconditional delimiter.

Note: For CPI-C simulations, if a WAIT with no time is specified, an event will be
needed to reset the wait.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

EVENT=event
Function: Specifies the name of an event that must be posted complete before
further messages can be generated.

Format: For the EVENT operand, you can enter one of the following options.
value can be any integer from 0 to 32766 or a counter specification whose value
is within this range. Zero is the offset to the first byte of the field for positive
offsets (+value) and the offset to the last byte of the field for negative offsets
(-value).

name Specifies the name of the event to be posted, where name is one to
eight alphanumeric characters.

N±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the network user area.

U±value
Specifies the event name to be referenced at an offset from the start
(+value) or back from the end (-value) of the device user area.

194 WSim Script Guide and Reference

Ns+value
Specifies an event name to be referenced at an offset from the start of
the network save area where s is the network save area and can be any
integer from 1 to 4095.

s+value
Specifies an event name to be referenced at an offset from the start of
the device save area where s is the device save area and can be any
integer from 1 to 4095.

You can use N±value, U±value, Ns+value, and s+value for variable event names.
The first eight bytes of data beginning at the offset (value) comprise the name.
For the network and device user area, code the name and then pad it with
blanks if the length of the name is less than eight. If the area does not exist or
no data is present, the name will consist of eight blanks. Because no validity
checking is performed on the name, you can use a name that cannot be
expressed as EBCDIC characters. You can put the name to be referenced into
the save area or user area with a DATASAVE statement.

Default: None.

TIME={ssssssss|cntr|A(integer)|F(integer)|R(value1[,value2])|T(integer)}
Function: Specifies the maximum amount of time to be delayed before
continuing in message generation.

Except for CPI-C simulation, if a system reply arrives before the specified time
delay has expired, message generation will continue immediately at the point
after the WAIT, unless the wait indicator is set by an IF statement.

If the TIME operand is specified, the TIME value overrides the delay value for
the message being generated. It is started immediately even if
THKTIME=UNLOCK is specified for the terminal.

Format: For the TIME operand, you can code one of the following values:

ssssssss
Specifies a fixed number or seconds, where ssssssss is an integer from 0
to 21474836. If 0 is specified, the WAIT will be treated as if the TIME
operand were not coded. If any other integer is specified, the
maximum amount of time to wait will be that number of seconds. The
delay will not be affected by the UTI value.

cntr A counter specification whose value is within the range of 0 and
2147483647. For any counter specification value, the maximum amount
of time to wait will be the counter value multiplied by the UTI value.

A(integer)
Specifies the maximum wait time will be chosen by randomly selecting
a number in the range from 0 to two times the specified integer and
then multiplying the number by the UTI value, where integer is an
integer from 0 to 1073741823. The average delay will be integer.

F(integer)
Specifies a fixed value, where integer is an integer from 0 to
2147483647. If F(0) is specified, the WAIT will be treated as if the TIME
operand were not coded. If any other integer is specified, the
maximum wait time will be the integer multiplied by the UTI value.

R(integer)
Specifies that the integer will identify an RN statement, where integer is

Chapter 8. Defining the message generation deck 195

an integer from 0 to 255. The maximum wait time will be a randomly
selected value from the range coded on the RN statement multiplied
by the UTI value.

R(value1,value2)
Specifies that the maximum wait time will be a randomly selected
value from the range of low (value1) to high (value2) multiplied by the
UTI value, where value1 is an integer from 0 to 2147483646 and value2
is an integer from 1 to 2147483647 or counter specifications whose
values are within these ranges. The value coded for value1 must be less
than the value coded for value2.

T(integer)
Specifies that integer will identify a RATE statement which defines a
rate table, where integer is an integer from 0 to 255. The maximum wait
time will be a randomly selected value from the rate table multiplied
by the UTI value.

Default: None.

Note: You can code either the EVENT or the TIME operands, but not both. If
you omit both TIME and EVENT operands, the device will not send another
message until the wait indicator is reset. In this case, a normal delay will be
used. Refer to , SC31-8945 for information on resetting the wait indicator.

UTI=uti
Function: Specifies a UTI which is to be used in calculating this delay. uti must
reference a UTI statement defined within the network configuration statement.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

Note: The TIME operand must be coded on the WAIT statement for the UTI
operand to be valid. If the TIME=integer with no prefix, and UTI=uti operands
are coded on a WAIT statement, the statement will be flagged in error. You
must code one of the prefix A, F, R, or T before integer when the UTI operand
is specified. Furthermore, the UTI operand is not valid if the EVENT operand
has been coded.

WTO - write data to console statement

[name] WTO (data...)

Function

The WTO statement writes user-specified data to the operator console.

Note: When using the WTO statement, make sure that the system console is not
overloaded with these messages.

Where

name
Function: Specifies a name to be used when branching during message
generation.

196 WSim Script Guide and Reference

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data...)
Function: Defines the data to be written to the operator.

Format: You can enter any amount of data for this operand, but a maximum of
50 characters of user data will actually be written to the operator console. The
data is enclosed by the text delimiting character specified on the MSGTXT
statement, defaulting to left and right parentheses.

You can use the data field options (see Chapter 9, “Data field options,” on page
199). Enter hexadecimal data by enclosing the digits within single quotes. To
enter a single quote, the special control character (CONCHAR), or a text
delimiting character (TXTDLM) as data, enter two of the characters. If two text
delimiting characters are entered, they must be on the same statement (no
continuation between the characters).

You can continue the data on the next line. However, if a single text delimiting
character is detected in column 71, it indicates the end of the operand, and any
data after column 71 is ignored.

Default: None. If no data is entered, no user data will be included in the
console message.

WTOABRHD - write data with abbreviated header to console
statement

[name] WTOABRHD (data...)

Function

The WTOABRHD statement writes user-specified data to the operator console
using only an abbreviated header containing only a message number preceding the
data.

Where

name
Function: Specifies a name to be used when branching during message
generation.

Format: From one to eight alphanumeric characters.

Default: None. This field is optional.

(data...)
Function: Defines the data to be written to the operator.

Format: You can enter any amount of data for this operand, but a maximum of
100 characters of user data will actually be written to the operator console. The
data is enclosed by the text delimiting character specified on the MSGTXT
statement, defaulting to left and right parentheses.

Enter hexadecimal data by enclosing the digits within single quotes. To enter a
single quote, the special control character (CONCHAR), or a text delimiting

Chapter 8. Defining the message generation deck 197

character (TXTDLM) as data, enter two of the characters. If two text delimiting
characters are entered, they must be on the same statement (no continuation
between the characters).

You can continue the data on the next line. However, if a single text delimiting
character is detected in column 71, it indicates the end of the operand, and any
data after column 71 is ignored.

Default: None. If no data is entered, no user data will be included in the
console message.

198 WSim Script Guide and Reference

Chapter 9. Data field options

This chapter describes the data field options, which you can use to insert variable
data into the message or data field being constructed during message generation
processing.

Description of data field options
To use an option, enclose the option with the control character (CONCHAR)
specified on the MSGTXT statement (the default is $). For truncations, integers are
truncated on the left and strings are truncated on the right. The control character is
not valid within the option itself.

The following options are valid only in the data field of a TEXT statement:
v FM
v NL
v TAB

You can use all other options in any of the following data fields:
v CMND statement DATA operand
v CMND statement URC operand
v DATASAVE statement TEXT operand
v IF statement LOCTEXT operand
v IF statement TEXT operand
v LOG statement data field
v OPCMND statement data field
v STRIPE statement data field
v TEXT statement data field
v WTO statement data field.
v WTOABRHD statement data field

The following list describes the data field options available with WSim:

$APPCLUID$
For CPI-C simulations, $APPCLUID$ returns the name of the APPC LU on
which the transaction program is defined. The name of the APPC LU is the
name field of the APPCLU statement with trailing blanks removed.

$ATTR,loc,l$
Specifies the character attribute values associated with a unique screen location
that are to be indirectly tested for the 3270 message generation facility. The
$ATTR,loc,l$ data option will generate up to 11 characters in length specified
by l, at the specific screen location loc. The valid values for loc are B±value,
C±value, and row,col where value is the offset and can be any integer from 0 to
32766 or a counter specification whose value is within this range. The values of
row and col can each be an integer from 1 to 255 or a counter specification
whose value is within this range. For example:
DATASAVE AREA=U+0,TEXT=($ATTR,C+0,9$)

Refer to , SC31-8945 for more information.

© Copyright IBM Corp. 1983, 2015 199

$CMONTH$
The name of the current month in EBCDIC is inserted in the data. The name is
in mixed case, for example January.

$CNTLRID$
The name field from the CNTLR statement is inserted into the data. The blanks
used to pad the name to eight characters are deleted.

$CNTR,cntr[,l]$
Includes the value of any counter in text data without affecting the value of
the counter, where cntr is a counter name, and l is an optional length value
that specifies the number of counter digits to include in the text.

The valid values for cntr are SEQ, NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn,
and DCn, where n is an integer from one to the value specified by the CNTRS
operand on the NTWRK statement. These values represent the sequence
counters and the index counters for the network, line, terminal, and device
levels. If l is specified for the length value, its value must be from one to ten. If
l is omitted, all significant digits of the counter value will be inserted in the
text, but leading zeroes will be eliminated.

$CNTRX,cntr[,l]$
Includes the hexadecimal value of any counter in text data without affecting
the value of the counter, where cntr is a counter name, and l is an optional
length value that specifies the number of hexadecimal bytes of the counter to
include in the text.

The valid values for cntr are SEQ, NSEQ, LSEQ, TSEQ, DSEQ, NCn, LCn, TCn,
and DCn, where n is an integer from one to the value specified by the CNTRS
operand on the NTWRK statement. These values represent the sequence
counters and the index counters for the network, line, terminal, and device
levels. If l is specified for the length value, its value must be one to four. If l is
omitted, all significant bytes of the counter value will be inserted in the text,
but leading zeros will be eliminated.

$DATE[±offset][,format]$
The current date (in the case of $DATE$ without the “+” or “-” or with a “+0”
or a “-0”) or the specified date (in any other case), in one of the formats
specified below, is inserted into the text. offset is an integer from 0 to 65535 or a
counter specification whose value is within this range and specifies the number
of days to be added to or subtracted from the current date before formatting it.
format is one of the following operands:

Operand Description Format

D Number of days this year ddd

E Date in European format dd/mm/yy

H Packed Julian padded with X'F' yydddF*

J Date in Julian format yyddd

M Calendar month's name January

N Date in Normal format (dd mon yyyy) 05 Feb 2002

O Date in ordered format yy/mm/dd

P Packed standard WSim date mmddyy*

S Date in sorted format yyyymmdd

T WSim standard date format mmddyy

U Date in USA format mm/dd/yy

200 WSim Script Guide and Reference

Operand Description Format

W Day of the week Monday

T is the default value for format.

Note: The options marked with an * return packed values.

DAY
The 2-character number for the day of the month is inserted in the data.

$DEVID$
The name field from the DEV statement is inserted in the data. The blanks
used to pad the name to eight characters are deleted.

$DSEQ,n$
The device sequence counter is inserted in the data, where n is the length of
the number inserted and can be any integer from one to ten. Each time the
device sequence counter is referenced, the counter value is updated before it is
inserted in the data. The $DSEQ,n$ option performs the same function as the
SEQ,n option. For terminals without devices, SEQ, DSEQ, and TSEQ are the
same counter.

$DUP,char,value$
The single byte specified by char is duplicated in the data value times, where
value can be an integer from 1 to 32767 or a counter specification whose value
is within this range. To enter hexadecimal data, specify two hexadecimal digits
for char. When duplicating a quote or a parenthesis, do not enter two quotes or
two parentheses.

EL
Specifies the end of a 1-byte (L) or 2-byte (LL) length field special option.
The EL option is valid only for non-display devices. See “Example of the
length data field options” on page 207 for examples of the EL, L, and LL
data field options.

FM
Simulates the 3270 Field Mark key. Each time this option is detected, a Field
Mark character is entered into the buffer. The FM option is ignored for
device types other than 3270. It is valid only in the TEXT statement data field.

ID,n
Specifies that all or part of the name field for the terminal is to be inserted in
the data, where n is an integer from one to eight that specifies the amount of
data to be inserted. If n is less than eight, the name is truncated on the right. If
n is greater than the length of the name, blanks are added on the right.

L
Specifies the start of a 1-byte length field with a value of one plus the length of
the text data following the L special option up to a EL special option or to
the end of the data. The L option is valid only for non-display devices. See
“Example of the length data field options” on page 207 for examples of the
EL, L, and LL data field options.

$LASTVERB$
For CPI-C simulations, $LASTVERB$ returns the name of the last CPI-C
statement (verb) that was issued by this message deck.

LL
The start of a 2-byte length field with a value of two plus the length of the text
data following the LL special option up to a EL special option or to the
end of the data. The LL option is valid only for non-display devices. See

Chapter 9. Data field options 201

“Example of the length data field options” on page 207 for examples of the use
of the EL, L, and LL data field options.

$LSEQ,n$
The line sequence counter is inserted in the data, where n is an integer from
one to ten that specifies the length of the number inserted. The number is
padded with zeroes, if necessary.

Each time the line sequence counter is referenced, the counter value is updated
before it is inserted in the data. This counter is a fullword and automatically
wraps to 0 after 2147483647. However, zero will not appear as the sequence
counter because the counter is updated to one when it is next referenced.

$LUID$
The name field from the LU statement is inserted in the data. The blanks used
to pad the name to eight characters are deleted.

$MONTH$
The 2-character number for the current month is inserted in the data.

$MSGTXTID$
Allows you to include in the text data the name of the message generation
deck in which the text resides. The message generation deck name is inserted
with trailing blanks deleted.

$NETID$
The name field from the NTWRK statement is inserted in the data. The blanks
used to pad the name to eight characters are deleted.

NL
Simulates the action of the New Line key on the 3270. The cursor is set to the
first unprotected character location of the next line. If no unprotected fields
exist, the cursor is set to character location zero. If the display contains no
fields, the cursor is set to the first position of the next line. The NL option is
ignored for device types other than 3270 and is valid only in the TEXT
statement data field.

$NSEQ,n$
The network sequence counter is inserted in the data, where n is an integer
from one to ten that specifies the length of the number inserted. The number is
padded with zeros, if necessary.

Each time the network sequence counter is referenced, the counter value is
updated before it is inserted in the data. This counter is a fullword and
automatically wraps to 0 after 2147483647. However, zero will not appear as
the sequence counter because the counter is updated to one when it is next
referenced.

$PATHID$
The PATHID function returns the name field from the PATH statement
currently being executed. The name field from the PATH statement is inserted
in the data. Blanks used to pad the name to eight characters are deleted.

$PULL[,queue_name]$
The PULL function returns the next text/string item from the queue specified
by queue_name. queue_name can be specified as either a static one-to-eight
character alphanumeric queue name or an area+offset definition. The
queue_name field conforms to the same rules as event names.

$RECALL,
{s}$
{Ns}

202 WSim Script Guide and Reference

{N±value[,leng]}
{Ns+value[,leng]}
{s+value[,leng]}
{U±value[,leng]}
{B±value[,leng]}
{C±value[,leng]}
{D+value[,leng]}
{TH+value[,leng]}
{RH+value[,leng]}
{RU+value[,leng]}
{(row,col)[,leng]}

Data from the indicated save area or user area is placed in the data. This
option allows the retrieval of data previously saved with the DATASAVE
statement, the DATASAVE operand on the IF statement, or a user exit. The
following lists define the RECALL option parameters. The value for value can
be any integer from 0 to 32766 or a counter specification whose value is within
this range. Zero is the offset to the first byte of the field for the positive offsets
(+value) and the offset to the last byte of the field for negative offsets (-value).

s Specifies an integer from 1 to 4095 that specifies the number of the
device save area from which data is recalled. The length of data
recalled is equal to the length of the data previously saved in the
device save area.

Ns Specifies an integer from 1 to 4095 that specifies the number of the
network save area from which data is recalled. The length of data
recalled is equal to the length of the data previously saved in the
network save area.

N±value
Specifies an offset into the network user area from the beginning or
end of the area, respectively.

Ns+value
Specifies an offset into a network save area, where s is the number of
the network save area and is an integer from 1 to 4095.

s+value
Specifies an offset into a device save area, where s is the number of the
device save area and is an integer from 1 to 4095.

U±value
Specifies an offset into the device user area from the beginning or end
of the area, respectively.

B±value
Specifies an offset into the device buffer from the beginning or end of
the buffer, respectively.

C±value
Specifies an offset from the current cursor position for +value or an
offset back from the current cursor position for -value.

D+value
Specifies an offset from the beginning of the data stream.

TH+value
Specifies an offset from the beginning of the transmission header.

RH+value
Specifies an offset from the beginning of the request header.

Chapter 9. Data field options 203

RU+value
Specifies an offset from the beginning of the request unit.

(row,col)
Specifies the row and column of the screen image of the display
device.

leng Specifies an integer from 1 to 32767 or a counter specification whose
value is within this range that is the length of data to be recalled from
the save area or user area. If the length plus the offset is longer than
the available data in the save area or is beyond the end of the user
area, only the available data is recalled.

Note: If the save area or user area was not defined in the network definition,
or no data has been previously saved in the save area, an informational error
message is written to the log data set, and the option is ignored. Data is
recalled from an existing user area even if no data has been previously saved
in that area.

The following examples present the valid formats of the RECALL option:
$RECALL,10$
$RECALL,N6$
$RECALL,N1+4,20$
$RECALL,1+DC4,20$
$RECALL,N+0,DC5$
$RECALL,N+TC2,5000$
$RECALL,U-10,5$
$RECALL,U-NSEQ,5$
$RECALL,N10+DC2$
$RECALL,U+0$
$RECALL,B+10,3$
$RECALL,C-5$
$RECALL,D+6,45$
$RECALL,(15,22)$
$RECALL,RH+4,1$
$RECALL,RU+3,1000$
$RECALL,TH+1$

$RNUM,lo,hi,n$
A random number between the specified low (lo) and high (hi) values and of
length n is inserted in the data, where n is an integer from 1 to 10, lo is an
integer from 0 to 2147483646 or a counter specification whose value is within
this range, and hi is an integer from 1 to 2147483647 or a counter specification
whose value is within this range. If the number generated is shorter than n, it
is padded with leading zeros. lo must be less than hi.

$RNUM,m,n$
A random number between the limits specified on the RN statement referenced
by m and of length n is inserted in the data, where m is an integer from 0 to
255, and n is an integer from 1 to 10. If the number generated is shorter than n,
it is padded with leading zeros.

SEQ,n
A terminal sequence counter is inserted in the data, where n is an integer from
one to ten that specifies the length of the number inserted. The number is
padded with leading zeros if necessary.

Each time the specified sequence counter is referenced, the counter value is
updated before it is inserted in the data. This counter is a fullword and
automatically wraps to zero after 2147483647. However, zero will never appear
as the sequence counter in the data since the counter is updated to one the
next time it is referenced.

204 WSim Script Guide and Reference

$SESSNO$
The session number for the LU is inserted into the data. The number inserted
is formatted as -nnnnn or null if no session number exists.

TAB
Simulates the 3270 Tab key. The cursor is moved to the first byte of the next
unprotected field. The TAB option is ignored for device types other than
3270 and is valid only in the TEXT statement data field.

$TCPIPID$
The name field from the TCPIP statement is inserted in the data. The blanks
used to pad the name to eight characters are deleted.

TOD,n
The time of day in EBCDIC is inserted in the data, where n specifies the
number of bytes to be inserted and is an integer from one to eight. The time of
day is formatted as HHMMSSTH (hours, minutes, seconds, tenths, and
hundredths of seconds). The most significant digits of the time are inserted if n
is less than 8.

$TPID$
For CPI-C simulations, $TPID$ returns the transaction program name for this
message deck.

$TPINSTNO$
For CPI-C simulations, $TPINSTNO$ returns the transaction program instance
number for this message deck. The number inserted is formatted as -nnnnn, or
null if no instance number exists.

$TSEQ,n$
A terminal sequence counter is inserted in the data, where n is an integer from
one to ten that specifies the length of the number inserted. The number is
padded with leading zeros if necessary.

Each time the specified sequence counter is referenced, the counter value is
updated before it is inserted in the data. This counter is a fullword and
automatically wraps to zero after 2147483647. However, zero will never appear
as the sequence counter in the data since the counter is updated to one the
next time it is referenced.

$UTBL,id,sel$
User data specified on a UTBL statement is inserted in the data, where id is the
number from the label field of the UTBL statement of the UTBL or the name
from the label field of the MSGUTBL statement which begins with an
alphabetic character from which the data is to be extracted, and sel is the data
entry in the table.

Note: Table entries are indexed beginning with 0. If n is too large and the
entry does not exist, no data is inserted.

You can choose one of the following options for sel:

Sn, SDn
The data is chosen sequentially using one of the device index counters,
where n is an integer from one to the value specified by the CNTRS
operand on the NTWRK statement and indicates which counter to use.
Each time the counter is referenced, the counter value is used to index
into the specified table to select the data, and then the counter value is
incremented. The counter value is reset to 0 when it references a value
past the last element in a user table.

Chapter 9. Data field options 205

STn The data is chosen sequentially using one of the terminal index
counters. The counters are used and altered as in SDn above.

SLn The data is chosen sequentially using one of the line index counters.
The counters are used and altered as in SDn above.

SNn The data is chosen sequentially using one of the network index
counters. The counters are used and altered as in SDn above.

Cn, CDn
The data is chosen from the user table using the device index counter
specified by n, where n is an integer from one to the value specified by
the CNTRS operand on the NTWRK statement. The index counter is
not incremented when referenced. The counter value is reset to 0 when
it references a value past the last element in a user table.

CTn The data is chosen from the user table using one of the terminal index
counters. The counters are used and altered as in CDn above.

CLn The data is chosen from the user table using one of the line index
counters. The counters are used and altered as in CDn above.

CNn The data is chosen from the user table using one of the network index
counters. The counters are used and altered as in CDn above.

DCn The data is chosen from the user table using the device index counter
specified by n, where n is an integer from one to the value specified by
the CNTRS operand on the NTWRK statement. The index counter is
not incremented when referenced. The counter value is not reset to 0
when it references a value past the last element in a user table. If n is
too large and the entry does not exist, no data is inserted.

TCn The data is chosen from the user table using one of the terminal index
counters. The counters are used and altered as in DCn above.

LCn The data is chosen from the user table using one of the line index
counters. The counters are used and altered as in DCn above.

NCn The data is chosen from the user table using one of the network index
counters. The counters are used and altered as in DCn above.

Fn The entry is chosen by fixed selection (the same entry is to be chosen
each time), where n is an integer specifying the entry in the UTBL. If n
is too large and the entry does not exist, no data is inserted.

R The data is chosen from the table randomly. A random number is
generated and the table entry referenced is placed in the generated
message.

Rn The data is chosen from the table randomly using the distribution
defined by the UDIST statement referenced by n, where n is an integer
from 0 to 255.

$VTAMAPPLID$
The name field from the VTAMAPPL statement is inserted in the data. The
blanks used to pad the name to eight characters are deleted.

$YEAR$
The last two characters of the number of the current year are inserted in the
data.

206 WSim Script Guide and Reference

Example of the length data field options
The examples below show the use of the EL, L, and LL data field options:

Text Statement Results

TEXT (LABCEL) X'04C1C2C3'

TEXT (LLABCEL) X'0005C1C2C3'

TEXT (LLABC) X'0005C1C2C3'

TEXT
(LABCLDEF$EL$$EL$)

X'08C1C2C304C4C5C6'

Chapter 9. Data field options 207

208 WSim Script Guide and Reference

Chapter 10. Data locations

Use the following tables when coding IF statements or recalling data from some
location to identify the data location. For additional information, refer to ,
SC31-8945.

Table 10. Data locations for non-SNA terminals

Option Data Location for Non-display
Devices

Data Location for Display Devices

B + 0 First byte of incoming or outgoing
data or message being built

First position of screen image (row
1, column 1)

B - 0 Last byte of incoming or outgoing
data or message being built

Last position of screen image

D + 0 First byte of incoming or outgoing
data or message being built

First byte of incoming or outgoing
data or message being built
including control information

N + 0 First byte of network user area First byte of network user area

N - 0 Last byte of network user area Last byte of network user area

U + 0 First byte of terminal user area First byte of terminal user area

U - 0 Last byte of terminal user area Last byte of terminal user area

C + 0 Unpredictable results Current position of cursor

C - 0 Unpredictable results Current position of cursor

s + 0 First byte of device save area
specified by s

First byte of device save area
specified by s

Ns + 0 First byte of network save area
specified by Ns

First byte of network save area
specified by Ns

(row,col) Not executed if coded on an IF
when LOCTEXT or LOCLENG is
not specified. If not coded on an IF
then the result will be
unpredictable.

Specified row and column of the
screen image

Table 11. Data locations for SNA terminals

Option Data Location for
Non-display Devices

Data Location for Display
Devices

Test SNA
Responses

B + 0 First byte of data in the
device buffer or message
being built, excluding SNA
headers

First position of screen image
(row 1, column 1)

No

B - 0 Last byte of incoming or
outgoing data or message
being built

Last position of screen image No

D + 0 First byte of incoming or
outgoing data or message
being built, including TH
and RH

First byte of incoming or
outgoing data or message
being built, including TH
and RH

Yes

N + 0 First byte of user area First byte of user area Yes

N - 0 Last byte of user area Last byte of user area Yes

© Copyright IBM Corp. 1983, 2015 209

Table 11. Data locations for SNA terminals (continued)

Option Data Location for
Non-display Devices

Data Location for Display
Devices

Test SNA
Responses

U + 0 First byte of user area First byte of user area Yes

U - 0 Last byte of user area Last byte of user area Yes

C + 0 Unpredictable results Current position of cursor No

C - 0 Unpredictable results Current position of cursor No

TH + 0 First byte of transmission
header

First byte of transmission
header

Yes

RH + 0 First byte of request header First byte of request header Yes

RU + 0 First byte of request unit First byte of request unit Yes

s + 0 First byte of device save area
specified by s

First byte of device save area
specified by s

Yes

Ns + 0 First byte of network save
area specified by Ns

First byte of network save
area specified by Ns

Yes

(row,col) Not executed if coded on an
IF when LOCTEXT or
LOCLENG is not specified. If
not coded on an IF then the
result will be unpredictable.

Specified row and column of
the screen image

No

Note:

v Logic tests on switches, counters, or locations specified by the AREA operand
will not be executed when SNA responses are sent or received when
SNASCOPE=LOC is specified on the IF statement. SNASCOPE=LOC is the
default. This can be changed by using the SNASCOPE operand such that any loc
option specification can be tested on any SNA flow.

v When multiple partitions are defined for a 3270 (LU2) terminal, buffer or cursor
offsets (B+, B-, C+, C-) will reference the data in the presentation space of the
currently active partition. The combination (row,col) value will reference the
display as you would see it, which could include data from more than one
partition. The logic test will be performed against the presentation space data of
the partition that owns the area of the display referenced by the (row,col)
specification.

v Tests of data against the data stream, B±, D+, TH+, RH+, or RU+ are dependent
upon where the test is performed in the deck. For example, if you display the
RH while in message generation, you will see the default RH, which may or
may not be the actual RH sent. Displaying these areas prior to the initial
intermessage delay being set will yield unpredictable results.

210 WSim Script Guide and Reference

Chapter 11. Terminal, device, and logical unit types

The following lists define the types of terminals simulated by WSim according to
the values specified by the TYPE and LUTYPE operands on the network
configuration statements.

The list below defines the valid terminal types simulated by the TYPE operand on
the DEV statement.

Operand Terminal Simulated

FTP TCP/IP FTP Client Device

LU0 SNA logical unit type 0

LU1 SNA logical unit type 1

LU2 SNA logical unit type 2 (3270 Display)

LU3 SNA logical unit type 3 (3270 Printer)

LU4 SNA logical unit type 4

LU6 SNA logical unit type 6

LU7 SNA logical unit type 7 (5250 Display)

STCP Simple TCP Client

SUDP Simple UDP Client

TN3270 Telnet 3270 Client Display

TN3270E Telnet 3270E Terminal

TN3270P Telnet 3270E Printer

TN5250 Telnet 5250 Terminal

TNNVT Telnet Line Mode Network Virtual Terminal Client

The list below defines the valid terminal types simulated by the LUTYPE operand
on the LU statement.

Operand Terminal Simulated

LU0 SNA logical unit type 0

LU1 SNA logical unit type 1

LU2 SNA logical unit type 2 (3270 Display)

LU3 SNA logical unit type 3 (3270 Printer)

LU4 SNA logical unit type 4

LU6 SNA logical unit type 6

LU62 SNA logical unit type 6.2

LU7 SNA logical unit type 7 (5250 Display)

© Copyright IBM Corp. 1983, 2015 211

212 WSim Script Guide and Reference

Chapter 12. Counters and switches

A WSim network has a set of switches and counters associated with it. One set of
network counters and one set of network switches is allocated for each network.
Line, terminal, and device counters are allocated for the resources defined within
your network.

The following table shows the sets of counters that are allocated to each simulated
device.

Table 12. Line, terminal, and device counters

Simulation type LSEQ LC1 - LCn TSEQ TC1 - TCn DSEQ DC1 - DCn

CPI- C TP

APPCLU

TP

X

XNote 1 XNote 2

VTAM Application

VTAMAPPL

LU

X X

X

TCP/IP Connection

TCPIP

DEV

X X

X

Notes:

1. This set of counters is available to all instances of a given CPI-C transaction program.

2. This set of counters is unique for each CPI-C transaction program instance.

The valid specifications for counters and switches are shown below.

NSWn
NSWn&NSWm&..
NSWn│m│...

Specify the testing of one or a combination of the 4095 network level switches.
You can test combinations of switches by using the & (and) or │ (or) logic
operators. The specified switches are always tested for being on.

TSWn
TSWn&TSWm&..
TSWn│TSWm│...

Specify the testing of one or a combination of the 4095 switches available to
you for each terminal. You can test combinations of switches by using the &
(and) or │ (or) logic operators. The specified switches are always tested for
being on.

SWn
SWn&SWm&..
SWn│SWm│...

Specify the testing of one or a combination of the 4095 switches available to
you for each device. You can test combinations of switches by using the &
(and) or │ (or) logic operators. The specified switches are always tested for
being on.

© Copyright IBM Corp. 1983, 2015 213

You can use the following to compare data against the sequence and terminal or
device counters during message generation.

NSEQ NTWRK sequence counter.

LSEQ LINE sequence counter.

TSEQ TERM sequence counter.

DSEQ DEV sequence counter.

NCn NTWRK index counter where n is an integer from 1 to 4095.

LCn LINE index counter where n is an integer from 1 to 4095.

TCn TERM index counter where n is an integer from 1 to 4095.

DCn DEV index counter where n is an integer from 1 to 4095.

214 WSim Script Guide and Reference

Chapter 13. Format control statements

You can use the following statements to format the network listings for better
readability. You can place these statements anywhere within the network
configuration definition statements or the message generation statements.

Statement Action

%EJECT Eject the listing to a new page.

%SPACE Skip one blank line.

%SPACE 1 Skip one blank line.

%SPACE 2 Skip two blank lines.

Note: You must code the % control character in the first statement column. You
can code the remainder of the command anywhere on the statement before column
72.

© Copyright IBM Corp. 1983, 2015 215

216 WSim Script Guide and Reference

Chapter 14. Conditions logic test not evaluated

The following rules outline all of the conditions for which a logic test is not
evaluated for a transmitted or received message:
v The IF statement specifies WHEN=IN for a transmitted message or WHEN=OUT

for a received message.
v The terminal type specified by the IF statement TYPE operand does not match

the type of terminal associated with the message.
v The SNA flow type specified by the IF statement SNASCOPE operand does not

match the flow type.
v A user area or a save area was specified by the IF statement LOC or AREA

operand, and the area does not exist for the terminal and the LOCLENG
operand is not coded.

v The IF statement LOC operand specifies (row,col) for a non-display terminal and
the LOCLENG operand is not coded.

v The beginning location for the test as specified by the LOC or AREA operand is
not within the available data and the LOCLENG operand is not coded.

v The ending location for the test as specified by the LOC and TEXT operands or
the AREA and LENG operands is not within the available data and the
LOCLENG operand is not coded.

v The LOC operand is set to a null value (no data) and the LOCLENG operand is
not coded.

v The TEXT operand is set to a null value (no data) and the LOCLENG or
LOCTEXT operand is not coded.

v The TEXT=RESP operand is coded but a RESP was not coded on the previous
TEXT statement and the LOCLENG or LOCTEXT operands are not coded.

v When the value of LOC is greater than the length of the save area and the
LOCLENG operand is not coded.

v The IF statement CURSOR operand specifies (row,col) and the value is not a
valid screen position for a display device or it is a non-display device.

v Network-level IF statements are not evaluated for CPI-C simulations. If they are
specified, WSim ignores them when simulating CPI-C transaction programs. For
combined networks, they are evaluated for all resources except CPI-C
transaction programs.

v Message deck IF statements that specify WHEN=IN or WHEN=OUT are ignored
for CPI-C simulations.

© Copyright IBM Corp. 1983, 2015 217

218 WSim Script Guide and Reference

Part 2. Guide to using STL and the STL Translator

© Copyright IBM Corp. 1983, 2015 219

220 WSim Script Guide and Reference

Chapter 15. Introducing the Structured Translator Language

This chapter introduces the Structured Translator Language (STL) and the STL
Translator. It explains the role of message generation decks in your network
simulation and describes how the STL Translator is used to create these decks as
well as the network definitions.

What is STL?
STL is a high-level, structured programming language that enables you to create
message generation decks and define terminals and devices you want to simulate
with WSim. Like other structured languages, STL uses constants, variables,
expressions, and control structures as program elements.

Your STL programs specify the data entered and activities performed by a terminal
operator at a terminal or by a device such as a magnetic stripe reader. For
example, you can set up a simulation to order inventory items using catalog
numbers generated randomly, simulate the actions of operators logging on to a
system, or design terminal interactions so that one terminal waits until another has
completed certain actions. You can even simulate orderly shutdown in the event of
a system failure message. The system under test responds to these messages just as
it would to messages generated by actual network resources.

The STL Translator is a utility that translates STL programs into message
generation decks. You can also include network definitions in the STL input data
set. The STL Translator invokes the Preprocessor to validate these statements for
you. Refer to , SC31-8947 for more information about the Preprocessor.

STL provides a convenient way to create message generation decks and include
network definitions; however, you can still use existing message generation decks
and network definitions.

What do STL programs contain?
STL programs can contain all the messages required for the simulation of an entire
network, or they can contain only those messages needed to accomplish specific
tasks. STL programs contain procedures, which are similar to modules and
subroutines in other programming languages. Procedures can call other
procedures, enabling you to code a procedure only once and use it as a subroutine.

STL programs are made up of statements, which are composed of keywords,
functions, assignments, expressions, and declarations. The elements that make up
STL programs are described in Chapter 17, “Understanding the elements of an STL
program,” on page 233.

Like other structured programming languages, STL uses variables to represent data
items. You can also use symbolic names to represent constants. STL allows three
data types for variables: integer, string, and bit (binary). To control conditional and
repetitive execution of statements, STL provides structured flow-of-control concepts
such as IF/THEN/ELSE and DO WHILE statements. STL also enables you to send
and receive messages asynchronously through a set of statements designed
specifically for this purpose. See Chapter 18, “Controlling STL program flow,” on
page 255

© Copyright IBM Corp. 1983, 2015 221

page 255 for more information about structured flow-of-control statements. See
“Testing asynchronous conditions” on page 291 for more information about
handling messages asynchronously.

How do STL programs relate to a script?
To simulate network resources with WSim, you must code a script, which consists
of a network definition and message generation decks.

The network definition defines the terminals being simulated and the various
options used for the different lines, terminals, and devices that compose the
simulated system. Message generation decks define the messages sent to the
system under test, decisions on messages sent or received, some aspects of the
timing of the messages, and the interaction among terminals.

You can code an entire script in one STL input data set. This data set can contain
both a network definition and STL programs.

The STL Translator translates your STL programs into message generation decks.
Each STL procedure is equivalent to one message generation deck. Since an STL
program may contain more than one procedure, an STL program may be translated
into more than one message generation deck.

This book describes how to write and translate STL programs into message
generation decks. However, you cannot create decks in isolation. You must consult
the test plan for the test being conducted to find out exactly what your decks
should accomplish. See , SC31-8948 for information about typical contents of a test
plan. Refer to the network definition to find out what options are coded for
various terminals and to determine how this affects your program planning.

Using STL
STL enables you to create messages using familiar programming structures and
conventions Designed for ease of use, it is intended to simplify the message
generation process. In addition, you should find it easier to understand and
maintain programs written in STL. New and experienced users alike should find
STL convenient and easy to learn.

This book enables you to learn to write STL programs and use the STL Translator
to create message generation decks and network definitions. Because of the
similarity of STL to other programming languages, you will probably find that it is
easy to learn and enables you to create message generation decks quickly and
accurately.

Using message generation statements with STL
Although STL is convenient for writing messages and data transactions for your
simulated terminals, it does not replace message generation statements. In fact, the
STL Translator translates your STL programs into message generation statements.
You may need to be familiar with these statements to understand fully the
behavior of the terminals you are simulating, especially when you are debugging a
complicated problem.

Existing message generation statements can be included into STL programs, so that
you do not have to re-create pieces of code you already have available. You can
simply place the sections you want to keep in the STL programs, using appropriate

222 WSim Script Guide and Reference

interface coding. For information about how to include message generation
statements in STL programs, see “Including message generation statements in STL
programs” on page 251.

Using the STL Translator
The STL Translator translates your STL program into the message generation decks
required to run a simulation and places the message generation decks into the data
set you specify. In addition, the STL Translator will identify any syntax errors in
your program, making it easier to debug.

The STL Translator also invokes the Preprocessor for you to verify any network
definition statements you included. These are placed in the data set you specify to
contain network definitions.

When using the STL Translator, you can place your translated message generation
decks directly in the MSGDD, the data set for message generation decks that are
ready to use. Alternatively, you can store them in a sequential data set and use the
Preprocessor to place them in the proper data set. Your network definitions are
placed directly in the INITDD data set, the data set for network definitions that are
ready to use. Typically, you will debug your STL programs using the STL
Translator and then use the translator to place the translated message generation
decks and verified networks directly in the partitioned data set MSGDD and
INITDD, respectively.

Figure 2 on page 224 shows the three ways that you can use the STL Translator.

Chapter 15. Introducing the Structured Translator Language 223

What does an STL input data set look like?
The example below shows a sample STL input data set. It contains a network
definition and two STL programs. When the STL programs are translated by the
STL Translator, the network definition and associated message generation decks
make up a script.

METHOD 1
┌──────────────┐
│ WSim Network │
│ Definitions │ ┌─────────────┐
│ and ├──┐ Translate STL │ INITDD │
│ STL │ │ Programs and │ & │
│ Programs │ ├────────────────────────→│ MSGDD │
!──────────────┘ │ Preprocess WSim │ Partitioned │
┌──────────────┐ │ Networks using │ Data Sets │
│ Include │ │ the STL Translator !─────────────┘
│ Data ├──┘
│ Set │
!──────────────┘

METHOD 2
┌──────────────┐ Preprocess WSim ┌─────────────┐
│ WSim │ Networks using │ WSim │
│ Network ├───────────────────────────→│ INITDD │
│ Definitions │ the WSim │ Partitioned │
!──────────────┘ Preprocessor │ Data Set │

!─────────────┘
┌──────────────┐
│ Include │
│ Data ├──┐
│ Set │ │ Translate ┌─────────────┐
!──────────────┘ │ STL using │ WSim │

├────────────────────────→│ MSGDD │
┌──────────────┐ │ the STL │ Partitioned │
│ STL │ │ Translator │ Data Set │
│ Programs ├──┘ !─────────────┘
│ │
!──────────────┘

METHOD 3
┌────────────┐
│ Sequential │
│ Data Set │
│ Containing │
│ WSim ├─┐
│ Network │ │ Combine
│ Definition │ │ the ┌─────────────┐
!────────────┘ │ Data Sets │ INITDD │

│ and │ & │
┌──────────────┐ ├─────────────→│ MSGDD │
│ Include │ ┌────────────┐ │ Preprocess │ Partitioned │
│ Data ├──┐ │ Sequential │ │ Using │ Data Sets │
│ Set │ │ │ Data Set │ │ the WSim !─────────────┘
!──────────────┘ │ Translate │ Containing │ │ Preprocessor

│ Using the │ WSim ├─┘
┌──────────────┐ │──────────────────→│ Message │
│ STL │ │ STL │ Generation │
│ Programs ├──┘ Translator │ Decks │
│ │ │ (SEQOUT) │
!──────────────┘ !────────────┘

Figure 2. Three methods of using the STL Translator

224 WSim Script Guide and Reference

@network
testnet ntwrk uti=100,bufsize=2400,delay=f(5)
mypath path test1
appl1 vtamappl
mylu lu lutype=lu2,path=(mypath),

frsttxt=logon
@endnetwork
/* Program #1 */
@program
logon: msgtxt /* Procedure to log on to the terminal. */
initself(’MYAPPL’)
endtxt
@endprogram
/* Program #2 */
@program
test1: msgtxt /* Procedure to test program execution. */
do i = 1 to 5

type "Hello"
transmit using PF1,

and wait until onin substr(screen,40,17) = ’Hello to you too.’
end
endtxt
@endprogram

The network definition shown above defines the network named TESTNET. It
contains the following information about the network:
v The NTWRK statement provides the network name and defines various

attributes of the network.
v The PATH statement indicates that the procedure named TEST1 in program

number 2 is used for the path named MYPATH.
v The VTAMAPPL statement defines the VTAM application symbolic name.
v The LU statement defines one logical unit in the network.

On the LU statement, the FRSTTXT operand indicates that the LOGON
procedure is used once to start the terminal. The LUTYPE operand defines the
type of logical unit being used, and the PATH operand indicates that this logical
unit will use the procedure named MYPATH defined on the PATH statement,
which is the main procedure for program number 2, after it finishes with the
logon procedure, LOGON.

The network definition determines the main procedures representing each program
which will be used by particular terminals in a network and establishes the order
in which they are used. You can design a network definition and associated
procedures to be always used together. You can also create more generic
procedures that can be used with different network definitions.

See Chapter 23, “Combining STL programs and network definitions,” on page 325
for more information about combining network definitions and STL programs into
scripts.

Each STL procedure begins with an MSGTXT statement and ends with an
ENDTXT statement. The name of the procedure appears immediately in front of
the MSGTXT statement followed by a colon. The first program in the example logs
on to the VTAM application. The second sends and receives the given messages
five times.

Note: The STL programs shown in the above example have not been translated
into message generation statements. Before you can use an STL program, you must
run the STL Translator to translate the program into message generation

Chapter 15. Introducing the Structured Translator Language 225

statements. For convenience, in this book the term “running a program” means
running the message generation statements produced by the STL Translator.

Unlike a typical program, an STL program does not just execute once and stop
when it reaches the end of the program. The program containing the procedure
named TEST1 identified on the PATH statement in the network definition (shown
above) repeats until the test operator stops the simulation run. The program does
not run continuously, however. In WSim, a terminal enters program execution to
send a message. After one message is sent, the terminal enters a delay state, called
the intermessage delay. During one terminal's intermessage delay, WSim generates
messages for other simulated terminals and handles the actual sending and
receiving of data. When the delay has expired and the terminal is in a state that
the operator can enter data, WSim returns to the first terminal and continues
executing its procedures until the terminal sends another message or executes the
SUSPEND statement, halting program execution again.

As discussed in , SC31-8945, creating network definitions and message traffic is an
iterative process. To code network definitions, you must understand the
requirements for messages for each terminal. To code the message traffic, you must
understand the network definition and the options coded for the various terminals.

226 WSim Script Guide and Reference

Chapter 16. Designing STL programs

WSim provides flexibility in designing messages. For example, you can set up data
tables to simulate a data base. Then, you can use data from the table to generate
messages or to compare values from the table against data received in messages
from the system under test. Messages received asynchronously, that is, not on an
anticipated time schedule, can be tested for certain conditions when they are
received. Additionally, you can simulate keystrokes and cursor movements on
display terminals.WSim maintains a screen image so that you can simulate display
devices.

Designing STL programs is like designing a program in any other programming
language. Before beginning to code, you should have a specific plan for what you
expect your program to do, how you will divide it into procedures, how you will
handle errors, how you will test received messages, and how you will manage any
other requirements for the program.

When planning your STL programs, you must:
v Understand the test plan for the network and the messages to be simulated
v Identify any special requirements for your simulated network
v Plan your programs
v Determine documentation procedures
v Plan program testing strategies.

This chapter discusses each of these steps in detail.

Understanding the test plan for the simulated network
A careful definition of what is to be simulated is essential for your design process
to be successful. The test plan for the simulation you are conducting provides
information about the resources and applications to be simulated and the tasks to
be performed. Consult your test planner to find out test objectives and how the
message traffic to be simulated contributes to those objectives. If you do not have a
test plan for the simulation you are conducting, see , SC31-8948 to determine the
information you must have when developing your simulation.

Since the detail in a test plan varies from installation to installation, you may need
to define some of the requirements yourself based on your knowledge of the
network and the applications you are testing.

Once you have an overview of the requirements from the test plan, you can
translate that knowledge into specifics. For example, you may have devices or
terminals with particular restrictions. Your network may have specific timing or
message-load requirements. You may want to use the same messages for each
terminal, or you may need to have each terminal perform different tasks. You will
need procedures to handle errors and to send messages to the test operator.

For example, a test plan might call for two terminals that send five different
messages with at least a 10-second delay between messages. Each message is sent
only after a designated message is received. The test plan indicates that both
terminals should send the same messages. To design a program to meet these
specifications, you need to answer questions such as the following:

© Copyright IBM Corp. 1983, 2015 227

v How are simulated messages created—are they typed in at a terminal, or
perhaps obtained from a device such as a magnetic stripe reader?

v What type of terminal are you using?
v What type of network are you using and what are its requirements?
v What kind of data are you sending?
v What kind of data will you receive from the application program?
v What timing is anticipated for messages to be received? Will they arrive on a set

schedule or at unanticipated times?
v What timing is anticipated for messages to be transmitted?

The answers to these and similar questions will determine what you need to
include when designing and coding your STL programs.

Identifying special requirements
To plan your simulation, you have to know not only what you expect the terminals
to accomplish but also what special requirements exist for the system. You may
need to consider the following:
v Requirements for products, programs, and specific resources you are testing
v Requirements for running the test
v Use of existing message generation statements.

Using products, programs, and specific resources
When designing your STL programs, you must ensure that you provide the
information needed to connect to other products and programs. For example, if
you are connecting to an application program, you must identify any special
message or logon requirements for the application.

STL enables you to simulate the functions of most IBM terminals. However, many
functions that you can simulate using STL are specific to display terminals and
cannot be used for other terminal types. As another example, if you are using an
SNA network, you may need to use the specific commands available to begin and
end SNA sessions.

Deciding how to run the test
Normally, an operator runs simulations. The operator can start and stop various
terminals, alter operating parameters, and monitor network activity, among other
tasks. For details about operator commands, see , SC31-8948.

You may also incorporate operator commands into your STL programs, so that the
simulation can run independently of an operator. For example, you may want to
incorporate operator commands when you have an established test that you want
to use to collect statistics continuously, or you may have a long test that you want
to be able to run after regular working hours.

WSim also enables you to code messages in your STL program that are sent to the
operator indicating test progress. Because such messages can be an important test
monitoring capability, be sure to plan for them when designing your STL
programs.

228 WSim Script Guide and Reference

Including message generation statements in STL programs
You may want to use existing message generation statements as part of your STL
programs. For example, you may already have message generation decks for logon
procedures. You will need to plan to use these statements and determine how they
can be incorporated.

You may also find that you need to incorporate these statements when using
specific types of devices. See “Including message generation statements in STL
programs” on page 251 for more information about using these statements.

Planning your programs
When designing your STL programs, you must define the program structure and
overall organization before you begin to develop the specifics. You should design
your simulation beginning with the major tasks to accomplish and then break each
task down into smaller and smaller subtasks. In this way, you can identify
common subtasks to be structured as separate procedures with the major tasks as
separate programs.

You can also determine if any existing message generation decks accomplish tasks
that you want to incorporate in your programs.

Follow these steps to develop an STL program:
1. Decide what you want the program to accomplish.
2. Divide the task into its major component parts.
3. Fill in specifics for these parts using pseudocode or ordinary English

statements.
4. Code specific parts, repeatedly checking that the parts you have defined are

compatible with the complete program design.
5. Test individual program elements and then the program as a whole.

When you plan your programs, remember that STL uses structured programming
concepts so that you can move through a program in a linear fashion. By using
these concepts, you can avoid the possibility of skipping around and creating a
confusing path through the programs. Each procedure in an STL program is
treated similarly to subroutines in other programming languages. Like subroutines,
procedures can be called. After the called procedure is completed, program
execution resumes at the point where the calling procedure left off. See Chapter 17,
“Understanding the elements of an STL program,” on page 233 and Chapter 18,
“Controlling STL program flow,” on page 255 for details about the elements and
structures of STL programs.

Structuring programs and procedures
The ways that you plan to use your programs determine how you structure them.
The way you plan to integrate your network definition and procedures determines
how you divide message traffic into different programs. For information about
integrating network definitions and STL programs, see Chapter 23, “Combining
STL programs and network definitions,” on page 325. The uses for various
procedures determine how you divide your programs into procedures.

As you create STL programs, remember that the network definition determines
which terminals use which procedures. All terminals can use the same procedure
or different terminals can use completely different procedures. Procedures can be
used in random order or can be run in a predefined order with some procedures

Chapter 16. Designing STL programs 229

being used more frequently than others. The PATH statements and operands in the
network definition define which procedures are used for each terminal and the
order in which they are run. Information about using the PATH statement with
STL programs appears in Chapter 23, “Combining STL programs and network
definitions,” on page 325.

You may want to code some standard programs to perform frequently used
functions. For example, you can develop programs to put a terminal into an
indefinite wait state or to log terminals on to various applications.

Other functions require specific programs. For example, you may want to code one
program that invokes a full-screen editor application and another that broadcasts
messages to other users of the system under test. You can match programs to the
different types of terminals you are simulating and the applications you are using.

Determining message content
What you simulate as message traffic is limited only by the capabilities of the
system you are testing and the resources you are simulating. With WSim, you can
generate message data, use keyboard keys, send messages at specified intervals,
and take actions based on messages received.

The content of your messages is determined by your application. For example, an
inventory program would probably require order numbers, part numbers, and
prices. Bank programs would require check numbers, money amounts, account
numbers, and so forth.

In addition to providing data to your application, you may want to simulate
operator actions. Operators may make mistakes in entering information, respond
improperly to application data requests, or forget to log off their terminals. You can
code your messages to simulate these types of errors.

You can design your system to assign messages to terminals randomly, in a
sequence you specify, or in a proportion you specify. The key is that the message
content must be appropriate to your application.

To code message content and keyboard activity, you must be familiar with the
application being tested and the terminals being simulated. For example, if you are
simulating a terminal interacting with a panel-driven application, you need to
know field locations for the application. If you are moving the cursor on the panel,
you must know the cursor locations you want to use and the keys that are used to
move the cursor.

Documenting your STL programs
As in all programming, the STL programmer's task includes more than coding. STL
programs must be documented so that other people can maintain and use them.

Each program should include comments at the beginning of the program,
preferably in a block surrounded by comment symbols. These comments should
indicate:
v What type of terminal the program is used for
v What the program does
v Any special dependencies
v What test the program is part of

230 WSim Script Guide and Reference

v What network definition is to be used with the program.

In addition to comments at the beginning of a program, you should comment the
code for your programs extensively. It will help other programmers if you indicate
what the program does and the logic that it follows. Using meaningful names for
procedures, variables, and constants will also help to document the function of
your programs.

In addition to documenting your programs, you or the test planner should keep
documentation about the test itself. For example, you should keep copies of the
test plans with notations of specifics on how the plan was carried out. These plans
should indicate which STL programs were used for particular tests and how the
programs were combined with network definitions. If you code the network
definition in a separate data set from the STL programs that generate messages for
it, you may want to keep copies of all the code together with your test plans, so
that all documentation is in one place.

Complete, accurate, and up-to-date test documentation facilitates test repetition.
Thorough documentation also makes it easier to build upon existing network
definitions and STL programs when modifying simulations or designing new ones.

Testing your STL programs
To ensure that programs are performing as anticipated, test your programs as you
develop them. Testing is a two-step process, involving syntax testing and logic
testing.

The STL Translator checks program syntax when it translates your STL programs
into message generation decks. See Chapter 22, “Using the STL Translator,” on
page 311 for more information about how programs are translated and how syntax
errors are treated. Correct syntax is only part of creating functioning programs. It
does not necessarily mean that programs will act as expected. It only means that
your programs will not stop executing because of syntax errors. You must also test
the logic of the programs.

To test the logic of your programs, you must know what message traffic and
terminal activity you are expecting. Your requirements for each terminal should be
specified in the test plan. Before testing your programs, you must combine
network definitions and STL programs if they are not included in the same data
set. See Chapter 23, “Combining STL programs and network definitions,” on page
325 for information about how to combine them.

Then, request STL message traces by coding STLTRACE=YES in your network
definition.WSim will log special STL trace messages during the simulation run.
After you run your simulation, run the Loglist Utility requesting STL message
traces. Information about using the Loglist Utility appears in , SC31-8947. Specific
information about using the Loglist Utility with STL message traces appears in
“Obtaining STL trace records” on page 341.

Facilitating STL program development
To facilitate program development, you should begin with a small network and
STL program and ensure that they are running correctly before expanding your
programs to produce more complex simulations. For example, you might begin by
defining one terminal of the type you will simulate. Then, have it log on to the
application and send and receive a message. After you accomplish that task, add

Chapter 16. Designing STL programs 231

messages so that the terminal can perform more tasks. After you have one terminal
functioning successfully, add more terminals.

You should proceed in an iterative fashion, changing only one network definition
or STL program each time. This process makes it easier to identify errors if they
occur. Although you may be tempted to move immediately to producing the
complete system simulation so that full-scale testing can begin, it is best to develop
a comprehensive understanding of how network definitions and STL programs are
created on a smaller scale. In the long run, this understanding simplifies
development of complex simulations and enables you to correct errors and
misunderstandings in a smaller, simpler environment before moving to a larger,
more complex simulation.

232 WSim Script Guide and Reference

Chapter 17. Understanding the elements of an STL program

This chapter describes the elements that make up an STL program and introduces
the basic concepts that you must understand to create a program. It also discusses
how you can incorporate existing message generation statements into an STL
program.

What are the basic elements of an STL program?
Each program consists of a controlling procedure and other procedures “called”
either by that procedure or by other procedures in the program. Include only one
procedure in each program that is not called by another procedure. See Chapter 23,
“Combining STL programs and network definitions,” on page 325 for more
information on how STL programs should be structured. See Chapter 22, “Using
the STL Translator,” on page 311 for more information about translating programs.

An STL program contains one or more procedures that share a common set of
resources, such as variable names. Each procedure is like a subroutine in other
languages. Procedures are made up of STL statements. They can be as long or as
short as you want depending on the demands of your system.

The following example shows a simple procedure:
greeting: msgtxt
type "Hello"
transmit using enter
endtxt

Each procedure in a program begins with an MSGTXT statement and ends with an
ENDTXT statement. The MSGTXT statement names the procedure. In the
preceding example, the name for the procedure is “greeting”. Each line is an STL
statement. The statements between the beginning and ending statements simulate
the action of typing “Hello” at a keyboard and pressing the Enter key to transmit
the message to the system under test.

Procedures cannot be nested, that is, you cannot include an MSGTXT-ENDTXT
pair of statements inside another MSGTXT-ENDTXT pair.

In addition to procedures, you can include declarative statements in your
programs to define tables and symbolic names such as variables and constants.
These statements are coded before the procedures that use the elements they
define.

What does an STL statement include?
STL statements are made up of the following elements:
v Variables and constants represent data items and must be defined as specific

data types. “Using variables and constants” on page 237 explains requirements
for variables and constants.

v Keywords are words that have special meaning to the STL Translator. They are
like commands or instructions in other programming languages. See “Using
keyword statements” on page 247 for more information about using keywords.

© Copyright IBM Corp. 1983, 2015 233

v Function names call functions available in STL. A function performs the task or
retrieves the data identified by the function name and returns a result. “Using
functions” on page 249 describes how to use STL functions.

v Operators enable you to define relationships between various elements.
Information about operators appears in “Using expressions” on page 248.

v Punctuation enables you to separate parts of your statements. Punctuation is
described in “Using STL syntax.”

v Labels enable you to identify STL statements. See “Using STL syntax” for
information about labels.

v MSGTXT and MSGUTBL names enable you to refer to your procedures and
tables at a later time. See “Using STL syntax” for information about these items.

STL uses three types of statements:
v Declarative statements enable you to declare variable types and classes; allocate

counters, switches, and save areas; define constants; and define user tables. For
more information about using declarative statements, see “Using declarative
statements” on page 242.

v Assignment statements assign a value to a variable. STL variables represent
storage locations in the computer's memory. The data in one of these locations
can be modified by assigning it a new value. For more information about
assignments, see “Using assignment statements” on page 246.

v Keyword statements control what the program does, similar to instructions or
commands in other languages. These statements always begin with a keyword.
They are discussed in “Using keyword statements” on page 247.

To obtain data values, you can use the following constructions:
v Expressions are a part of a statement that determines or calculates a value. The

value can be numeric, character, or binary. An expression can include variables,
constants, operators, and functions. With an expression, you can define
relationships between constants and variables and calculate new values for
variables. Expressions can be a part of any of the three types of statements. See
“Using expressions” on page 248 for more information about expressions.

v Functions return a specific data value. STL does not allow user-written
functions; all functions are built-in. A function performs the task or retrieves the
data identified by its name and returns a result. Functions can be used as part of
an expression. For more information about using functions, see “Using
functions” on page 249.

Using STL syntax
You must follow the syntax rules described in this section when coding STL
programs.

In STL programs, statements can begin in columns 1 through 254 and can extend
through column 255. Thus, you can use standard programming style with
indenting. A statement can appear alone or with several other statements on the
same line. Statements can also be continued over more than one line. Each
statement ends with a semicolon (;) or with the end of the line if it is not being
continued. The following two statements are identical:
message_count = 0
message_count = 0;

More than one statement can be included on the same line as long as you separate
the statements with a semicolon:

234 WSim Script Guide and Reference

message_count = 0; error_count = 0

To write long statements, continue statements on more than one line by placing a
comma (,) after each line to be continued, for example:
type "The quick brown fox jumps over the",

"lazy dog."

Note: There will be a space between “the” and “lazy” because strings are
concatenated with a space unless you use the concatenation operator. See
“Constant types” on page 239 for more information about the concatenation
operator.

Place spaces before and after variable names, operators, and keywords. Although
spaces are not always required by the language syntax, this convention is
recommended for readability. Parentheses must be used in pairs.

To continue functions or statements requiring commas to separate a list of items,
you must code two commas on the end of the statement, as shown below.
/* In this case, the first comma separates string3 and string4, while */
/* the second comma indicates that the statement will be continued. */
string string1,string2,string3,,

string4,string5

STL uses a number of reserved words. These are words that have special meaning
to the language and cannot be used in a different context. Reserved words include
keywords, function names, special reserved variables, and bit values. All STL
reserved words are listed alphabetically in Chapter 29, “STL reserved words,” on
page 507.

Note: In the text of this book, all reserved words are displayed in uppercase for
ease of reference. You do not have to use uppercase when you code them. See
“Typographic conventions” on page xv for complete information about the
typographic conventions used in this book.

You can give a label to most statements. The label enables you to refer to the
statement from elsewhere in your program.

Labels must follow these rules:
v Labels can include these characters: uppercase and lowercase alphanumeric

characters and the special characters $, @, and #.
v Labels cannot begin with a number.
v Labels must be from 1 to 8 characters long.
v Labels cannot be STL reserved words or variable names used in the program.
v Labels cannot begin with the character combinations $LA, $SET, or $INC. (These

characters are used by the STL Translator.)

Use the following syntax for labels:
label: statement

You must provide a name on the MSGTXT statement to name each procedure and
on MSGUTBL statements to name each table.

MSGTXT and MSGUTBL names must follow these rules:
v Names can include these characters: uppercase and lowercase alphanumeric

characters and the special characters $, @, _(underscore), ?, and #.

Chapter 17. Understanding the elements of an STL program 235

v Names cannot begin with a number.
v Names must be from 1 to 8 characters long.
v Names cannot be STL reserved words or variable names used in the program.
v Names cannot begin with the character combinations $LA, $SET, or $INC. (These

characters are used by the STL Translator.)

It does not make a difference whether you use uppercase or lowercase letters when
you are programming in STL except when you use strings and in certain
designated situations explained in later chapters. However, the STL Translator
translates all variable names to uppercase. Thus, the STL Translator regards
“Message” and “message” as the same variable.

You can place comments anywhere in an STL source data set. Comments begin
with the characters /* and end with the characters */. Each comment must have
these beginning and ending characters, but they do not have to be on the same
line. Anything between the characters is regarded as a comment. The following
examples show how comments can be coded.
/***/
/* This is a comment. The statement below contains */
/* a comment on the same line as the statement. */
/***/
message_count = 0 /* Initialize message count. */
/**/
/* Comments may continue over several lines. See */
/* the next statement for an example. */
/**/
message_count = message_count + 1 /* Increment the count of messages

received. */

You can nest comments, that is, a comment can contain another comment. This
capability is useful if you want to deactivate a section of an STL program
temporarily, as shown in the following example.

Before Deactivation
message_count = 0 /* Initialize count of messages received. */
error_count = 0 /* Initialize count of errors detected. */

After Deactivation
/*
message_count = 0 /* Initialize count of messages received. */
error_count = 0 /* Initialize count of errors detected. */
*/

In the preceding example, enclosing the two statements and their comments with
comment characters deactivates the statements. By removing the added comment
characters, you can quickly reactivate the two statements. To ensure that your
comments appear with the intended member associated with each procedure or
user table of the MSGDD you should always code your comments following the
MSGTXT or MSGUTBL statements. For example:
ATEST: msgtxt
/**/
/* These are the block comments for this procedure. */
/**/
&#8942;
endtxt
mtable: msgutbl
/**/

236 WSim Script Guide and Reference

/* This table is used for test purposes. */
/**/
&#8942;
endutbl

Notes:

v STL comments /* and */ cannot be coded within the network definition. See
“Including network definition statements in STL” on page 325 for more
information.

v Double-byte character set data must be enclosed in SO and SI characters and
must be coded on the same input line. The SI/SO pairs of characters that result
from DBCS data in a string constant ending on one input line and continuing
again, with the || symbol, on another input line are removed from the resulting
string.
For example:
A = ’<.A.B.C>’||,

’<.D.E.F>’

results in:
A = ’<.A.B.C.D.E.F>’

For more information about DBCS, see “Simulating DBCS terminals” on page
271.

Using variables and constants
In STL, you can use variables and constants as data items in your programs. A
variable contains data that is used by a program in a certain way, but whose value
can vary. In a program, each variable has a unique symbolic name. The value of a
variable changes, but not its name.

Constants are values that do not change in the course of program execution.
Constants can be used to initialize variables, to test the contents of variables, and
to generate messages. They can also make up part of STL expressions. You can
assign names to most constants. STL substitutes the actual constant value for the
constant name.

Variables are classified as one of three data types: integer, string, or bit. Constants
are classified as integer, string, hexadecimal string, or bit data types. Once a type is
associated with a variable or named constant, you cannot change the type in the
course of a program. Variables are also defined as being a “shared” or “unshared”
class.

You can declare variable types and classes explicitly using the appropriate
declarative statement. You can also declare constant names with declarative
statements. You can also define variable types and classes implicitly by assignment.
See “Using declarative statements” on page 242 for an explanation of how variable
types and classes and constant names are declared explicitly. See “Using
assignment statements” on page 246 for an explanation of how to use assignment
statements.

The names you assign to variables and named constants follow rules similar to
those for statement labels. Variable and constant names must follow these rules:
v Names can include these characters: uppercase and lowercase alphanumeric

characters and the special characters $, @, _ (underscore), ?, and #.

Chapter 17. Understanding the elements of an STL program 237

v Names cannot begin with a number.
v Names must be from 1 to 32 characters long.
v Names cannot be STL reserved words.

Variable types
The type of a variable refers to the type of data represented by the variable. STL
uses three variable types:
v Integer variables can take any positive integer value from 0 to 2147483647.

When a network is first initialized, the value of an integer variable is 0. Integer
variables translate into counters in the scripting language.

Note: An integer variable's value will wrap if incremented beyond 2147483647
or decreased below 0. That is, if a variable has a value of 2147483647 and 1 is
added to it, the result is 0. If a variable has a value of 2 and 3 is subtracted from
it, the result is 2147483647.

v String variables can contain only characters. They must be from 0 to 32767
characters long. A character can be any 1-byte value. (A 1-byte value is X'00' to
X'FF'.) Double-byte character set data must be enclosed in SO and SI characters
and must be coded on the same record. For more information on DBCS, see
“Simulating DBCS terminals” on page 271. When a network is first initialized,
the value of a string variable is '' (the null string, which is represented by a pair
of single or double quotation marks). String variables translate into save areas in
the scripting language.

v Bit variables represent binary data items—that is, data items that can take one
of two possible values. STL bit variables can have the value of ON or OFF.
When a network is initialized, all bit variables have a value of OFF. Bit variables
translate into switches in the scripting language.

You should initialize integer, string, and bit variables explicitly whenever possible
since the save area, counter, or switch represented by the variable may have been
altered before the execution of an STL program.

Variable classes
Variables are defined by class as well as type. STL defines two variable classes:
v Shared variables can be used by all terminals in a network. Shared variables

translate into network counters, save areas, and switches in the scripting
language.

v Unshared variables can be used only by individual terminals; each terminal has
its own private copy of an unshared variable. Unshared variables translate into
device counters, save areas, and switches in the scripting language.

Usually variables in STL programs are unshared. Sometimes you may want to keep
statistics across an entire network or to communicate between terminals in a
network. In these cases, you can use shared variables.

You must explicitly declare variables as shared. If variables are not explicitly
declared as shared, they will be implicitly declared as unshared. See “Using
declarative statements” on page 242 for more information about declaring variables
explicitly.

You can declare up to 4095 shared integer variables, 4095 shared string variables,
and 4094 shared bit variables. Also, in an STL program for a terminal, you can
declare up to 4095 unshared integer variables, 4095 unshared string variables, and
4095 unshared bit variables.

238 WSim Script Guide and Reference

The following example illustrates the difference between shared and unshared
variables.
integer unshared terminal_error_count /* This statement declares an */

/* unshared integer variable. */
integer shared network_error_count /* This statement declares a */

/* shared integer variable. */
.
.
.
terminal_error_count = terminal_error_count + 1
network_error_count = network_error_count + 1

Terminals A and B execute the statements in the preceding example; terminal A
executes them first and the initial value of the variables is 0. When terminal A
completes execution, its copy of “terminal_error_count” has a value of 1 and the
shared variable “network_error_count” has a value of 1. When terminal B
completes its execution, its copy of “terminal_error_count” has a value of 1 and the
shared variable “network_error_count” has a value of 2, because it has been
increased by both terminals.

Reserved variables
Reserved variables are variable names that have special meaning in STL. Like all
other STL variables, these variables represent data items. Since their names are
reserved, you cannot define your own variables using these names.

The reserved variable names are the following: BUFFER, DATA, RH, RU, SCREEN,
and TH. The reserved variables BUFFER and SCREEN are treated identically by
the STL Translator and can be used interchangeably. BUFFER is typically used for
nondisplay terminals, and SCREEN is typically used for display terminals. These
variables refer either to the terminal input or output buffer (excluding SNA
headers) for nondisplay terminals or to the screen image buffer for display
terminals. The other four reserved variable names refer to the RH, RU, TH, and
DATA portion of the data stream. See “Testing asynchronous conditions” on page
291 for information about using reserved variables with asynchronous conditions.

The following list explains the type of data that exists in each of these reserved
variables.

BUFFER or SCREEN
For nondisplay terminals, the device buffer. For display terminals, the
screen image.

DATA or TH
Incoming or outgoing data, including SNA headers if present.

RH The SNA request/response header (RH) portion of incoming or outgoing
data plus the SNA request/response unit (RU).

RU The SNA request/response unit (RU) portion of incoming or outgoing
data.

Constant types
Constants are classified into four types: integer, string, hexadecimal string, and bit.
You do not declare types for constants; the value of a constant determines its type.
The types can take the following values:
v Integer constants are positive decimal integers from 0 to 2147483647.

Chapter 17. Understanding the elements of an STL program 239

message_count = 0 /* 0 is an integer constant assigned to the */
/* integer variable "message_count." */

if error_count = 5 then ...
/* Here the integer constant 5 is used to test */
/* the current value of the integer variable */
/* "error_count." */

v String constants are any set of characters. A string constant must be enclosed in
a pair of single or double quotation marks (the string delimiter character). If a
string constant contains the string delimiter character (a single or double
quotation mark), that character must be entered twice so that it will be
recognized. You will probably want to use single quotes as your delimiter
character for strings containing double quotes and double quotes as a delimiter
for strings containing single quotes. You do not have to use the same delimiter
character throughout your program; you can use whichever is most appropriate
for each string you are enclosing.
The following examples show how string constants and the delimiting characters
are used.
message = ’Hello’ /* The string constant ’Hello’ is assigned to */

/* the string variable "message." */
message = ’Isn’’t this fun!!!’

/* Notice the doubling of the single quotation */
/* mark in the contraction when it is used as */
/* the string delimiter. */

message = "Isn’t this fun!!!"
/* Notice the single quotation mark is not */
/* doubled in the contraction when double */
/* quotation marks are used as string */
/* delimiters. */

Note: The string constants '' and "" have a length of zero and are called the null
string.
You can continue a string constant without a blank between the continued
characters by ending a line with a quotation mark, entering the concatenation
operator (││) and a comma, and continuing on a subsequent line with the rest of
the string enclosed in quotation marks. If you do not use the concatenation
operator, the continuation of the string follows an intervening blank (X'40').
The following examples show how strings are concatenated.
In the first example, the value of the variable “introduction” is “HelloGoodbye”
without an intervening blank because the concatenation operator joins the two
strings without a blank.
introduction = ’Hello’││’Goodbye’

/* Here a string constant is used as part of a */
/* string expression. */

In the next example, there is one space between “men” and “to” because a space
is included before the string delimiter character. The concatenation operator joins
the strings without an intervening blank.
/***/
/* Below, a long, continued string constant is assigned to "message." */
/***/
message = ’Now is the time for all good men ’││,

’to come to the aid of their country.’
/***/
/* The previous STL statement assigns the variable "message" the value: */
/* Now is the time for all good men to come to the aid of their country. */
/***/

Note that ending spaces are included as part of the string.

240 WSim Script Guide and Reference

You could have included the blank and omitted the concatenation operator by
coding the statement as follows:
message = ’Now is the time for all good men’,

’to come to the aid of their country.’

This statement would assign the same value to the variable “message”.
There are no limits on the length of string constants, although string constants
greater than 32767 characters may be truncated before use. If a string constant is
too long, you will get a message indicating a possible truncation in your STL
trace messages. See “Obtaining STL trace records” on page 341 for more
information about STL trace messages.

Note: Double-byte character set data must be enclosed in SO and SI characters
and must be coded on the same record.

v Hexadecimal string constants are specified by enclosing pairs of hexadecimal
digits in string delimiters followed by the character x or X. Each pair of
hexadecimal digits represents a single character in the string.
The following examples show how hexadecimal strings can be used in STL
statements. Both statements have the same effect. The first statement assigns a
hexadecimal string constant to a string variable. The second statement assigns
the same value using a normal character string constant.
message = ’C8859393965A’x /* This statement uses a hexadecimal string. */
message = ’Hello!’ /* This statement uses a normal string. */

You must use hexadecimal string constants when the data cannot be expressed
using printable characters, as shown in the following example.
if substr(data,1,3) = ’0030FF’x then ... /* Test for a special 3-byte code. */

v Bit constants can take the value ON or OFF. These constants can be assigned to
bit variables or used to test the current setting of a bit variable. The following
examples show how bit constants can be used.
error_occurred = off /* Bit variable "error_occurred" */

/* is initialized to OFF. */
if message_received = on then ... /* The bit constant ON is used to */

/* test the current setting of */
/* bit variable "message_received." */

Named constants
You can declare names for integer and string constants using declarative
statements. See “Using declarative statements” on page 242 for information about
using constant names.

Constant names follow the same rules as variable names. Once the name is
declared, the STL Translator substitutes the actual constant for the name whenever
the name is encountered during translation.

When possible, you should use named constants instead of string or integer
variables because STL allocates resources—save areas, counters, or switches—for
variables but not for named constants. Thus, named constants use fewer resources.
See “Allocating WSim resources” on page 246 for information about allocating save
areas, counters, and switches.

Named constants are useful when you use a constant repeatedly in an STL
program, particularly if it is a long string constant. They also make it easier to
change a constant globally throughout an entire program if necessary.

Chapter 17. Understanding the elements of an STL program 241

Using declarative statements
Declarative statements enable you to provide definitions for the STL Translator that
are in effect for all the statements in a program following the declarations.

The four types of declarative statements enable you to define the following STL
elements:
v Variable types and classes
v Constant names
v User tables
v Allocation of save areas, counters, and switches to variables.

You must code declarative statements outside procedures; they cannot be located
between MSGTXT and ENDTXT statements. Declarative statements that you code
at the beginning of a program are in effect for the entire program. Those coded
between procedures in a program are only in effect for the procedures that follow.

It does not matter whether you code all declarative statements at the beginning of
a program or intersperse them between the procedures that make up a program.
However, you cannot use a variable or constant name defined on a declarative
statement before its declaration in the source data set. For this reason, you may
find it helpful to place all declarative statements preceding the first procedure in
your program.

The example in Figure 3 shows how declarative statements and procedures are
coded in an STL program.

Note: Variable declarations for one program do not apply to another program. For
example, if you had four programs in your input data set, a variable defined in
program 1 would not be usable by program 2. Each program has its own set of
variables.

The following sections explain the four types of declarative statements.

These declarations ┌───── declarative statement
will be in effect for │ .
the entire program. ─────┤ .

│ .
└─────

proc1: msgtxt
.
.
.
endtxt

These declarations ┌───── declarative statement
will be in effect only │ .
for those procedures ────┤ .
that follow--not for │ .
proc1. └─────

proc2: msgtxt
.
.
.
endtxt
proc3: msgtxt
.
.
.

Figure 3. Placement of declarative statements in an STL program

242 WSim Script Guide and Reference

Declaring variable types and classes
You can use declarative statements to explicitly declare the variables you will use
in your program.

You can implicitly declare a variable's type simply by using the variable in an
assignment statement. See Using Assignment Statements for more information
about this method of declaring variables. Although it may be more convenient to
declare variables implicitly, you must be careful to remember the variable type
declared so that you do not accidentally mix types.

Explicit declarations enable you to assign the class SHARED to variables and
override the default class, UNSHARED. If you want variables to be shared, you
must declare them explicitly. If you do not use an explicit declaration, variables
that are implicitly declared (declared on an assignment statement) have the class
UNSHARED. Explicit declarations also provide a description of the variable type
that you can refer to, which can be useful when debugging your programs.

You can explicitly declare one or more variables as integer, string, or bit data types
by using the following declarative statements:

┌ ┐
INTEGER │ {SHARED} │ variable_list

│ {UNSHARED} │
! ┘

┌ ┐
STRING │ {SHARED} │ variable_list

│ {UNSHARED} │
! ┘

┌ ┐
BIT │ {SHARED} │ variable_list

│ {UNSHARED} │
! ┘

Note: In the preceding syntax examples, brackets, [], indicate that the items
enclosed in brackets are optional. Braces, { }, mean that you should choose one of
the items enclosed in braces. Underlined items are the default. Italics indicate items
for which you must fill in information. See Typographic conventions for more
information about typographic conventions used in this book.

The following examples show how these statements can be used.
string mydata, yourdata
integer shared total
bit unshared getout, stayout

In the preceding examples, “mydata” and “yourdata” are unshared string
variables, “total” is a shared integer variable, and “getout” and “stayout” are
unshared bit variables.

Declaring named constants
The CONSTANT statement enables you to give names to constants. This statement
uses the following syntax:
CONSTANT name constant_expression

The name must follow the rules outlined for variable names in “Using variables
and constants” on page 237. The constant_expression can be any constant expression.
See “Using expressions” on page 248 for a definition of constant expressions.

Chapter 17. Understanding the elements of an STL program 243

For example, the following statement defines the name “Greetings” to represent a
string constant:
constant Greetings ’Hello. How are you?’

The examples that follow show how you can use CONSTANT expressions to
declare named constants.
constant price 100
constant tax 5
constant total_cost price + tax

In the preceding example, the named constant “total_cost” has a value of 105. If in
the future, “price” changes to 200, the value of “total_cost” will automatically
change to 205 since its definition depends on the value of “price”.

Use named constants instead of variables whenever possible because named
constants, unlike variables, are not allocated to save areas, counters, or switches.
See “Allocating WSim resources” on page 246 for information about save areas,
switches, and counters.

The following two examples have the same effect, but the second is less efficient
because it requires more resources.
/* Example 1. */
constant greetings ’Hello. How are you?’...
message = greetings
/* Example 2. */
string greetings...
greetings = ’Hello. How are you?’
message = greetings

In the second case, the string “greetings” is explicitly declared as a string variable,
rather than being declared as a named constant. In both cases, after execution the
variable “message” contains the string 'Hello. How are you?'

Named constants can only be declared with the CONSTANT statement; they
cannot be assigned a name implicitly with an assignment statement. An
assignment of a string constant produces a string variable rather than a named
constant.

All constants are assigned a class of UNSHARED.

Declaring user tables
A user table is a one-dimensional array of string constants. WSim enables you to
select entries from this predefined array. You can select entries randomly, pick
specific entries, or choose entries in a defined sequence. User tables can be
especially useful when your simulated terminals must send messages containing
information such as names, part numbers, account codes, or other items that can
be specified logically in a list.

You can define a user table in one of three ways:
v Use a UTBL statement in your network definition.
v Use an MSGUTBL message generation statement.
v Use an MSGUTBL declarative statement group in your STL program.

244 WSim Script Guide and Reference

Defining a table in your network definition enables you to use the table when
simulating that network only. See Creating WSim Scripts for information about
defining user tables for a network. However, you may want to use the same table
with more than one network definition. To do this, use the MSGUTBL statement.

In your STL program, use the MSGUTBL statement group to define a user table.
Place this statement group before the procedures that will use the table. As
indicated in “Using declarative statements” on page 242, it is most convenient to
place all declarative statements at the beginning of your program unless there is
reason to do otherwise.

The syntax of the MSGUTBL statement group is the following:
msgutbl_name: MSGUTBL

utbl_entry
┌ ┐
│ utbl_entry │
│ . │
│ . │
│ . │
└ ┘
ENDUTBL

msgutbl_name is a 1-character to 8-character name for the table. The name must not
have been previously used. The STL Translator remembers this name as an
MSGUTBL name and will not permit it to be used as anything else.

utbl_entry is a string constant expression. It can be a simple string constant
(enclosed in quotation marks), a named string constant, a hexadecimal string
constant, or a concatenation of two or more string constants.

The following example shows a sample user table. Remember that the user table is
coded as a part of your STL program but it cannot be a part of a procedure.
Because the MSGUTBL statement group is a declarative statement group, you must
code it outside pairs of MSGTXT and ENDTXT statements.
/* This user table contains customer names. */
customer: msgutbl

’John Doe’
’Mary Smith’
’Sam Jones’
’Susan Barnes’
’Bob White’

endutbl

In this example, the table contains the following entries. Each entry is identified by
a sequential number, called its index. Entry numbers begin with 0.

0. John Doe

1. Mary Smith

2. Sam Jones

3. Susan Barnes

4. Bob White

You can have up to 2147483647 entries in each table.

This section explains how to define user tables. See Chapter 19, “Generating
messages for an STL program,” on page 267 for information about how to use
information from user tables in STL programs.

Chapter 17. Understanding the elements of an STL program 245

Allocating WSim resources
When an STL program is processed by the STL Translator, WSim allocates save
areas, counters, and switches to hold the values of the variables used by the STL
program. See Creating WSim Scripts for general information about how WSim uses
save areas, counters, and switches.

The ALLOCATE statement tells the STL Translator exactly which save area,
counter, or switch resource should be allocated to an STL variable when your
program is translated. Normally, STL does this allocation automatically. Use the
ALLOCATE statement to combine your STL program with message generation
decks that already exist or to define variables to be used at the line and terminal
level. You may also need to use the ALLOCATE statement to combine several STL
programs into one. See “Combining STL procedures from different STL programs”
on page 333 for information about using more than one program.

The following examples show how to use the ALLOCATE statement.
allocate mydata ’1’ /* Use device save area 1 to hold "mydata." */
allocate mycount ’DC1’ /* Use device counter 1 to hold "mycount." */
allocate netflag ’NSW3’ /* Use network switch 3 to hold "netflag." */

You can use the ALLOCATE statement to define variables as corresponding to
network and device save areas; network, terminal, line, and device counters; and
network, terminal, and device switches. See “ALLOCATE” on page 363 for more
information about how to define specific resources.

The two variable classes used by the STL Translator, SHARED and UNSHARED,
correspond to save areas, counters, and switches at the network and device levels,
respectively. Consequently, the translator only knows about network and device
level save areas, counters, and switches. That is, the STL Translator keeps track of
resources—save areas, counters, and switches—at these two levels, rejecting
attempts to define or allocate them more than once.

However, the STL Translator does not automatically keep track of line-level and
terminal-level counters and terminal-level switches. You may need to use these
resources to collect statistics for all the devices associated with a particular
terminal or line. If so, you may allocate an STL variable to one of these resources.

For example, the following statement identifies the STL variable “group_count”
with terminal counter 13.
ALLOCATE group_count ’TC13’

The STL Translator uses 'TC13' (terminal counter 13) whenever it encounters the
variable “group_count” in a program. You must define this usage in your program
because the translator does not track the use of terminal and line resources. In
other words, you can declare multiple STL variables that use the same terminal or
line resource.

Using assignment statements
STL variables represent storage locations in computer memory. The data in one of
these storage locations can be modified by assigning it a new value. An assignment
names a variable and gives it a value. In STL, assignments are specified by an
equal sign (=). An assignment statement uses the following syntax:
variable_name = expression

246 WSim Script Guide and Reference

For example, you might make the following assignment:
message = ’Take care!’

This means that the string 'Take care!' is to be put into the location called
“message” in the computer's memory.

If the type of the variable has been declared before the assignment is processed,
the type of the variable must be the same as the type of the expression. If the
variable type has not been declared, it will be implicitly declared as having the
same type as the expression and a class of UNSHARED.

For information about what can be contained in an expression, see “Using
expressions” on page 248.

Using keyword statements

Keyword statements advance the progress of the program and complete actions.
The following are examples of keyword statements:
type "Hello"
transmit using pf8
say ’Test complete.’

Each keyword statement begins with a keyword. In the preceding examples, TYPE,
TRANSMIT, and SAY are keywords. Syntax and complete descriptions for keyword
statements appear in Chapter 25, “Reference to STL statements,” on page 355.

You can code a simple STL program using four basic statements. These statements
are the following:
v MSGTXT
v TYPE
v TRANSMIT
v ENDTXT.

The MSGTXT-ENDTXT pair signals the beginning and end of an STL procedure.
The TYPE statement simulates an operator typing information at a keyboard, and
the TRANSMIT statement simulates the operator sending information to the
system under test.

Each keyword statement can have a label. Code the label before the keyword and
follow the label with a colon. Use a label if you will want to refer to a statement
from elsewhere in your program. The following keyword statement includes a
label:
test1: type "Hello"

Structured flow-of-control statements are a special type of keyword statement that
enable you to control the order in which statements in your program are executed.
The keywords that begin structured flow-of-control statements are the following:
v CALL
v IF/THEN/ELSE
v DO
v SELECT.

Chapter 18, “Controlling STL program flow,” on page 255 discusses these
statements and their use in detail.

Chapter 17. Understanding the elements of an STL program 247

Using expressions
You can obtain values to use in your program by using expressions. An expression
can be a variable, a constant, or the result of an operation or STL function. STL
uses three types of expressions: integer, string, and bit.

Integer expressions
An integer expression can be composed of a single integer variable or constant or
these can be joined by one or more arithmetic operations.

The valid operations that you can use for integer expressions are addition (+),
subtraction (-), multiplication (*), division (/), and remainder division (//).
Expressions involving more than one operation are evaluated by the following
rules:
1. High-precedence operations (*, /, //, and functions that return an integer) are

evaluated first, left to right as they are found in the expression.
2. Low-precedence operations (+ and -) are evaluated after high-precedence

operations, left to right as they appear in the expression.
3. You can use parentheses to alter this order of evaluation.

An integer constant expression contains only integer constants and integer
operators. The STL Translator performs any operation involving only integer
constants when the program is translated and flags any errors it finds. For
instance, any all-constant operation that results in a value less than 0 or greater
than 2147483647 is flagged as an error. Division by the constant 0 is also flagged as
an error.

WSim performs all other operations (that is, those involving variables and
functions) when the program executes. Any of these operations resulting in a value
greater than 2147483647 will wrap to 0. Values less than 0 will wrap to 2147483647.

All arithmetic operations are performed using integer arithmetic, that is, fractional
portions of a number, whether the result or an intermediate value, will be
truncated.

The following are examples of assignments that show valid integer expressions:
count = 5 /* Expression is a single integer constant. */
count = old_count /* Expression is a single integer variable. */
count = old_count + 1 /* Expression is an addition operation. */
count = old_count - 2 * 5 /* Expression includes multiple operations: */

/* first the product (2 * 5) is evaluated, */
/* then that value (10) is subtracted from */
/* the value of variable "old_count." */

count = (old_count + 2) * 5 /* Expression includes multiple operations: */
/* first the sum of (old_count + 2) is */
/* evaluated, then that sum is multiplied */
/* by 5. The order of evaluation is */
/* different from the previous example */
/* because parentheses are used. */

count = 5/2 /* Expression is the result of 5 divided by */
/* 2. Since arithmetic operations are */
/* integer only, the result is 2. */

String expressions
A string expression can be composed of a single string variable, string constant,
hexadecimal string constant, or one or more string operations. You can concatenate,
or join, strings with or without blanks between them. To concatenate without a

248 WSim Script Guide and Reference

blank, use the concatenation operator (││). To concatenate with a blank between
strings, simply leave a blank (X'40') between the string expressions. (A single blank
is inserted even if more than one blank appears between the two strings being
concatenated.) You can use parentheses to group the operations in a string
expression, but they do not affect the order of evaluation.

The following examples of assignments show valid string expressions.
msg = ’Hello!’ /* Expression is a single string constant. */
msg = greetings /* Expression is a single string variable. */
msg = ’Hello!’││greetings /* Expression is the concatenation of a */

/* string constant and a string variable */
/* without an intervening blank. */

msg = ’Hello!’ greetings /* Expression is the concatenation of a */
/* string constant and a string variable */
/* with an intervening blank. */

msg = greetings body closing /* Expression is the concatenation (with */
/* blanks) of three string variables. */

Note: Double-byte character set data must be enclosed in SO and SI characters and
must be coded on the same record. The SI/SO pairs of characters that result from
DBCS data ending on one record and continuing again on another record,
however, are removed from the resulting string. For more information on DBCS,
see “Simulating DBCS terminals” on page 271.

Bit expressions
A bit expression can be one of the following: a bit variable, a bit constant, or a bit
function. Bit expressions can be evaluated either to the value ON or OFF.

The following examples show bit expressions used in assignments:
got_it = found /* A bit variable is assigned to a bit variable. */
found = on /* A bit constant is assigned to a bit variable. */
too_late = posted(’MYEVENT’) /* The value of a bit function is assigned */

/* to a bit variable. */

Using functions
STL provides a number of built-in functions that can be used to access and
manipulate data. All functions return a value, which can be an integer, string, or
bit value. You can use functions as expressions or parts of expressions wherever
variables can be used. STL function names are reserved words. You cannot use
them as names or labels.

A function consists of the name of an STL function, followed by a left parenthesis,
any arguments for the function, and a right parenthesis. The function arguments
consist of values you are supplying to the function. Even if the function does not
use arguments, you must code the parentheses. If you specify more than one
argument, you must separate them with commas. You can continue argument lists
on another line by ending the current line at the end of an argument and
continuing with the next argument on a new line. You indicate the continuation of
that current line by ending it with two commas (one as an argument separator and
one as the continuation indicator). You can continue string constant arguments
using the continuation rules for string constants given in “Constant types” on page
239.

Function syntax and details on arguments and the values each function returns
appear in Chapter 26, “Reference to STL functions,” on page 449.

Chapter 17. Understanding the elements of an STL program 249

A number of functions perform translations between data types. A list of these
functions and their actions follows:

Function Action

B2X() Converts a binary string to a hexadecimal string value.

C2D() Converts a hexadecimal string to its decimal (integer) value.

C2X() Converts an EBCDIC character string to its hexadecimal string value.

CHAR() Converts an integer value to its EBCDIC character representation.

D2C() Converts a decimal integer value to its hexadecimal string value.

E2D() Converts an EBCDIC number to its decimal (integer) value.

HEX() Converts a decimal value to its hexadecimal string value.

X2B() Converts a hexadecimal string to a binary string.

X2C() Converts a hexadecimal string to a character string.

A number of functions perform translations between single- and double-byte
character set data. A list of these functions and their actions follows:

Function Action

DBCSADD() Adds SO/SI characters to string data.

DBCSADJ() Deletes SI/SO pairs from string data.

DBCSDEL() Deletes SO/SI characters from string data.

DBCS2SB() Converts ward 42 (EBCDIC) double-byte character set data to single-byte
character set data.

SB2DBCS() Converts single-byte character set data to ward 42 (EBCDIC) double-byte
character set data.

SB2MDBCS() Converts single-byte character set data to ward 42 (EBCDIC) double-byte
character set data and wraps SO/SI characters around the data.

For more information on DBCS, see “Simulating DBCS terminals” on page 271.

Several functions enable you to locate portions of strings. These functions are
discussed in the following sections.

The SUBSTR function
You can use the SUBSTR function (substring function) to reference a portion (or a
substring) of a string expression. The syntax for this expression is the following:
SUBSTR(source,starting_position[,length])

This function returns a string expression that you can use wherever string
expressions can be used. The source is the string expression in which the substring
is to be found. The starting_position describes where to look for the beginning of
the string. Optionally, you can include the length of the substring you are looking
for.

For example, you can use the SUBSTR function as follows:
mydata = ’Now is the time’
substring = substr(mydata,5,2)

In this example, the variable “substring” is assigned a value of 'is'.

250 WSim Script Guide and Reference

You will often use the SUBSTR function to test asynchronous conditions. The
function has a number of limitations when used with asynchronous conditions. See
“SUBSTR” on page 488 for more information about these limitations.

The INDEX function
The INDEX function returns an integer value that gives the position of a target
string in a source string. If the target string is not found in the source string, the
function returns a value of 0.

The syntax of this function is the following:
INDEX(source,target)

You can use this function to determine whether specific information is included in
a string you received, as shown in the following example.
source = "What a nice day."
location_found = index(source,’nice’)

In this example, the variable “location_found” would be assigned the value “8”
because “nice” begins at position 8 in the source string.

Including message generation statements in STL programs
You may want to include one or more message generation statements in an STL
program. For example, you have existing message generation decks that you want
to include into an STL program. Message generation statements to be included in
an STL program must be preceded by an @GENERATE statement (which can also
be coded @GEN) and followed by an @ENDGENERATE statement (which can also
be coded @ENDGEN). The STL Translator uses the message generation statements
between the @GENERATE and @ENDGENERATE statements as input lines and
places them unchanged in the output. The statements included in the message
generation deck produced by the STL Translator are the output lines.

When the STL Translator finds an @GENERATE statement, it enters “generate
mode.” While in this mode, the translator processes subsequent lines in your STL
program according to the following rules:
1. You can include only string constants, STL variable names, and STL comments

in the message generation statements included in the STL program.
2. The STL Translator generates one output line in a message generation deck for

each input line in the STL program.
3. When the STL program is translated, the STL Translator copies string constants

directly into the output line. You can use named constants in your input
statements. Their declared values are substituted for the constant name.

4. STL variable names are replaced by the save areas, counters, and switches used
to represent them in message generation statements.

5. No syntax checking is done and offsets are not added for save areas when the
save area number is included as a variable name.

6. The output line resulting from the translation must not contain more than 72
characters. Longer output lines result in an error message. Thus, when coding
input lines, you must be sure that expansion of named constants and variable
names will not result in an output line that is too long.

7. When the STL Translator finds an @ENDGENERATE statement, generate mode
ends.

Chapter 17. Understanding the elements of an STL program 251

8. While in generate mode, the STL Translator assigns a new message generation
statement number to each output line that does not begin with 15 blanks. Be
sure to code 15 blanks at the beginning of each line that does not begin a new
message generation statement. For example, if you want to continue a line,
make sure the continued line begins with at least 15 blanks. Failure to do this
can cause errors when tracing your STL program.

9. The LABEL message generation statement should not be coded. It causes errors
when tracing your STL program.

Note: WSim interprets a non-blank character in column 1 of an output message
generation statement as a label. Be careful to include leading blanks in your
generate mode input where necessary.

The example below shows how to use the @GENERATE statement in an STL
program. This example calls a user exit routine.

Input lines are coded as string constants. Input lines must be enclosed in STL
string delimiter characters (either single or double quotation marks).

Rules for using string delimiter characters in input lines differ from those used for
STL statements. See “@GENERATE” on page 355 for an explanation of these rules.
example: msgtxt
/***/
/* @GENERATE Example */
/* Notice that message generation statements are coded as string */
/* constants. */
**/
.
.
.
@generate
’ DATASAVE AREA=’stringvar’,TEXT=($RECALL,U+0,8$)’
@endgenerate
.
.
.
endtxt

Note: If you code a network definition in your STL input, you can also include
message generation decks between the @NETWORK and @ENDNETWORK
statements. See “Including network definition statements in STL” on page 325 for
more information.

Including data from other data sets
You can include data from other partitioned data sets in your STL input data set,
such as common ALLOCATE statements or procedure headers, by coding the
@INCLUDE statement. This statement retrieves the member specified and inserts
the contents of that member where you coded the statement.

You can code the @INCLUDE statement anywhere within your STL input data set.
When you code multiple statements on the same line with the @INCLUDE
statement, you must code the @INCLUDE statement last. Comments can be coded
at the end of the line.

You must code complete STL statements in an included member. You can code
@INCLUDE statements within an included member; however, you cannot include

252 WSim Script Guide and Reference

members recursively (that is, you cannot code @INCLUDE statements in two
included members that reference each other). You cannot continue statements
across members.

For example, suppose that you wanted to include common user tables in your STL
input data set. You can code the @INCLUDE statement as shown below.
@program = myprog
@include myutbls /* Include my common set of MSGUTBLs */
mytest: msgtxt...
endtxt

You can code your common user tables in the member named MYUTBLS in the
include data set, as shown below.
myusers: msgutbl
’user 1’
’user 2’
endutbl
mypws: msgutbl
’password 1’
’password 2’
endutbl

When you translate your STL input data set, the STL Translator inserts the user
tables, specified by the @INCLUDE statement, where you coded the statement.

For more information on the @INCLUDE statement, see “@INCLUDE” on page
358. For information on the SYSLIB DD data set used to define the include data
set, see “Input to the STL Translator” on page 314.

Defining user exits
You can invoke a user exit routine during the execution of your program with the
USEREXIT statement. It allows the exit routine to produce messages and control
execution of the program by setting return codes.

When you code the USEREXIT statement, you must specify the member (user exit
load module) in the load library that was loaded during initialization and that
gains control when this statement is encountered during program execution.

You can also specify the parameters to be passed to the user exit when it is called.
The following example shows how to code the USEREXIT statement. In this
example, the exit “MYEXIT” is called with the parameter “NOWAIT”.
userexit(’MYEXIT’,’NOWAIT’)

For more information on the USEREXIT statement, see “USEREXIT” on page 444.
Concatenate the user exit data set to the STEPLIB DD JCL statement. For
information about coding user exits, refer to , SC31-8950.

Using CPI-C verbs
You can emulate CPI-C verbs with STL statements; the STL statements for CPI-C
begin with CMACCP on page “CMACCP — Accept_Conversation” on page 369
and end with CMTRTS on page “CMTRTS — Test_Request_To_Send_Received” on
page 394.

You can specify input verb parameters in any of the following ways:

Chapter 17. Understanding the elements of an STL program 253

v STL variables (shared or unshared)
v String or integer named constants
v Literal values.

You must specify output verb parameters as unshared STL variables.

Note: The STL Translator requires a free device save area for each string literal or
named constant referenced, and a free device counter for each integer literal or
named constant referenced. If a free save area or counter is not available when
required, the STL Translator issues error message ITP3027I or ITP3028I.

The syntax for the CPI-C STL statements is
verbname({string_variable|string_name_constant|’literal’},, <character input>

{integer_variable|integer_named_constant|numeric_literal},, <numeric input>
unshared_integer_variable,, <character output>

.

.
unshared_integer_variable) <numeric output>

Note: CPI-C verb parameters are separated by a single comma. STL also uses a
comma to indicate continuation. If a CPI-C verb is continued across more than one
line, you must break the line at the end of a parameter, and you must specify two
commas.

The following example shows how to code CPI-C verbs as STL statements:
Example:
/* Set the symbolic destination name to "SERVER". */
sym_dest_name="SERVER"
/* Initialize a conversation with "SERVER". */
CMINIT (conversation_id, sym_dest_name, return_code)
/* Allocate a conversation with "SERVER". */
CMALLC (conversation_id, return_code)
/* Setup the send buffer and length. */
send_buffer = ’Data to send’
send_length = length(send_buffer)
/* Send data to "SERVER". */
CMSEND (conversation_id,,

send_buffer,,
send_length,,
request_to_send_received,,
return_code)

/* Deallocate the conversation with "SERVER". */
CMDEAL (conversation_id, return_code)

For more information about defining CPI-C networks and scripts, refer to Creating
WSim Scripts.

254 WSim Script Guide and Reference

Chapter 18. Controlling STL program flow

STL enables you to control the flow of your program by using a subset of keyword
statements called structured flow-of-control statements. These statements enable
WSim to move through a program in a nonlinear fashion, making it possible for
you to program more efficiently.

The following statements and structures are used to control program flow:
v Structured flow-of-control statements
v Conditions.

Structured flow-of-control statements give you the ability to have your procedure
call another procedure, passing control to the second procedure. They also enable
you to take a specific action depending upon conditions that occur. “Using
structured flow-of-control statements” describes the flow-of-control statements
available in STL.

Conditions are included in many flow-of-control statement groups. Depending on
whether these conditions are evaluated as “true” (the condition exists) or “false”
(the condition does not exist), control of program execution may pass to a different
location. For information about setting up the conditions used in many of these
statement groups, see “Using conditions and relational operators” on page 261.

Using structured flow-of-control statements
Structured flow-of-control keyword statements enable you to execute statements
conditionally and repetitively. Unlike the message generation statements, STL does
not include a branching or “go to” statement. (See , SC31-8945 for more
information about message generation statements.) In STL, you must use the
structured control statements to alter program flow.

STL uses four types of control statements:
v CALL
v IF/THEN/ELSE
v SELECT
v DO.

The CALL statement shifts control of program execution from one procedure to
another procedure. IF/THEN/ELSE and SELECT statement groups execute
statements selectively depending on conditions that exist. DO statement groups
enable you to group statements logically and in some cases to execute statements
repetitively.

The following sections discuss the use of these statements.

The CALL statement
The CALL statement enables your procedure to execute another procedure, and
return to the original, or calling, procedure. Thus, a procedure can be used as a
subroutine, called by many other procedures when appropriate. Programming and
maintenance are more efficient, because the procedure used as a subroutine does
not have to be copied into each procedure that uses it.

© Copyright IBM Corp. 1983, 2015 255

Unlike subroutines in other programming languages, in STL you cannot pass data
as an argument to a called procedure. When you call a second procedure, you are
simply passing control of execution to the called procedure. When the called
procedure finishes its execution, control returns to the calling procedure at the
statement following the CALL statement.

The syntax of the CALL statement is the following:
CALL procedure_name

The procedure_name is the name of the procedure being called. This name is coded
on the MSGTXT statement that begins the called procedure.

Use a RETURN statement in the called procedure to return control to the calling
procedure. Although an ENDTXT statement also acts like a RETURN statement, it
is good practice to include the RETURN statement in a procedure that is called.
Any RETURN statements encountered when a CALL has not been made are
ignored.

The following example shows how the CALL and RETURN statements are used:
procA: msgtxt
.
.
.
call procB
.
.
.
endtxt
procB: msgtxt
.
.
.
if done_yet? then

return
.
.
.
endtxt

An STL program includes one procedure that is entered on a PATH statement in a
network definition, called the main procedure. All other procedures in that
program are “called” by a procedure included in the program. See Chapter 23,
“Combining STL programs and network definitions,” on page 325 for information
about the relationship between STL programs and PATH statement entries.

The IF/THEN/ELSE statement group
The IF/THEN/ELSE statement group enables your program to execute a statement
or group of statements conditionally, depending on whether the condition
following the IF keyword is true or false.

The syntax of the IF statement is the following:
IF condition THEN[;] statement[;]

[ELSE[;] statement]

The statement following the THEN is executed only if the result of the condition is
true. See “Using conditions and relational operators” on page 261 for an
explanation of what you can include in a condition.

256 WSim Script Guide and Reference

You do not have to include an ELSE and its accompanying statement in your IF
statement group. If an ELSE is included, the statement after the ELSE is executed
only if the result of the condition following the IF is false.

You can code the statements following the THEN and ELSE keywords on the same
line as the keyword or on the following line. The semicolon following the THEN
keyword is optional if the ELSE is on the following line. However, if the ELSE is
coded on the same line as the THEN, the semicolon is required.

If you want your program to do nothing when a given condition exists or not,
code the NOP statement following the THEN or ELSE keyword. Since THEN and
ELSE must be followed by some type of statement, NOP enables the program to
move to the next statement without taking action.

The following example shows a simple IF statement group:
if count = 1 then

say ’count has a value of 1’
else

say ’count does not have a value of 1’

The SAY statement shown in the previous example displays the given string at the
operator's terminal. If “count” equals 1, the message “count has a value of 1” is
displayed at the terminal; otherwise, the message “count does not have a value of
1” is displayed.

The statement following a THEN or ELSE keyword can be another structured
flow-of-control statement group or a single statement.

An ELSE is associated with the nearest preceding unmatched IF. When you use
ELSE statements, be careful either to include an ELSE statement for each IF or to
be aware of which IF the ELSE is associated with. The following example shows
how you can use structured statement groups within other statement groups and
illustrates the proper use of the ELSE keyword.
if count = 1 then

if quiet = off then
say ’count has a value of 1’

else
nop

else
do

say ’count does not have a value of 1’
say ’count =’ char(count)

end

In the preceding example, the first ELSE is associated with the second IF, and the
second ELSE is associated with the first IF.

The SELECT statement group
The SELECT statement group enables you to execute one of several alternative
statements depending on the condition that exists.

The syntax of this group of statements is the following:
SELECT

WHEN condition THEN[;] statement
┌ ┐
│ WHEN condition THEN[;] statement │
│ . │
│ . │

Chapter 18. Controlling STL program flow 257

│ . │
└ ┘

OTHERWISE[;] statement
END

The condition following the first WHEN is evaluated as true or false. If the
condition is true, the statement following the THEN is executed and execution
continues at the statement following the END keyword. The statement following
the THEN can be a statement or statement group such as IF/THEN/ELSE, DO, or
SELECT. If the condition is false, the program moves to the next WHEN statement
group. See “Using conditions and relational operators” on page 261 for an
explanation of what you can include in a condition.

If none of the WHEN conditions are true, the program executes the statement or
statement group following the OTHERWISE keyword. You must have at least one
WHEN statement and an OTHERWISE statement in a SELECT statement group. A
SELECT statement group must end with an END statement.

The following example displays the use of the SELECT statement group.
data_length = length(message)
select

when data_length > 100 then
say ’Data is longer than 100 characters’

when data_length > 50 then
say ’Data is longer than 50 characters and shorter than 101 characters’

when data_length > 10 then
say ’Data is longer than 10 characters and shorter than 51 characters’

otherwise
say ’Data is shorter than 11 characters’

end

The DO statement groups
STL provides four types of DO statements:
v Simple DO statement groups
v DO WHILE statement groups
v DO FOREVER statement groups
v Iterative DO statement groups.

Simple DO statement groups execute statements only once, allowing a group of
statements to be executed as a single statement. The other types of DO statement
groups control the repetitive execution of a group of statements. DO FOREVER
statement groups loop forever. DO WHILE statement groups are conditional loops,
which continue to execute as long as some condition is satisfied. The iterative DO
statement group specifies the number of times the statements in a group are
repeated.

Each type of DO statement group must end with an END statement.

Note: @GENERATE and @ENDGENERATE statements also act as an implied DO
statement group.

Simple DO statement group
A simple DO statement group enables you to group the statements it includes
together so that the statements can be thought of and processed as a single
statement. The statements in a simple DO statement group are executed once,
unlike the other DO statements discussed in this chapter.

258 WSim Script Guide and Reference

The syntax of a simple DO statement group is the following:
DO

statement
.
.
.

END

Simple DO statement groups are often used after a THEN, ELSE, or WHEN
statement to allow the conditional execution of multiple statements, as seen in the
following example.
if count = 1 then /* Both statements in this DO group */

do /* will be executed if "count" has a */
b = 0 /* value of 1. */
c = 0

end

In the preceding example, both assignment statements (b = 0 and c = 0) are
executed if “count” has a value of 1. In the next example, however, the assignment
c = 0 is always executed.
if count = 1 then

b = 0
c = 0

The DO WHILE statement group
The DO WHILE statement group enables you to execute statements repetitively
while some condition is true. The DO WHILE statement group uses the following
syntax:
DO WHILE condition

statement
.
.
.

END

When WSim executes the DO WHILE statement, the condition is evaluated. If the
condition is true, WSim executes the statements between the condition and the
END statement. Control returns to the DO WHILE statement and WSim evaluates
the condition again. When the condition is false, the execution continues with the
statement following the END statement. See “Using conditions and relational
operators” on page 261 for an explanation of what you can include in a condition.

The following example shows a DO WHILE statement:
get_out = off
do while get_out = off

.

.

.
if a = 100 then

get_out = on
else

nop
end

You can end execution of a DO WHILE statement group prematurely by using the
LEAVE statement. You can end the current iteration through the statement group
by using the ITERATE statement. See “LEAVE” on page 414 and “ITERATE” on
page 413 for details and examples of the use of the LEAVE and ITERATE
statements.

Chapter 18. Controlling STL program flow 259

The DO FOREVER statement group
The DO FOREVER statement group enables you to repeat a statement group
forever. WSim executes the statements until a LEAVE statement is encountered or
the simulated network is canceled.

This statement group enables your program to perform actions continuously. This
capability can be useful if you want a terminal to repeat an action for as long as
your simulation is running.

The DO FOREVER statement group has the following syntax:
DO FOREVER

statement
.
.
.

END

In the following example, WSim executes the statements in the DO FOREVER
statement group until the network is canceled. Thus, it repeatedly types the 10
numbers, transmits them, and waits until a message is received.
do forever

type ’1234567890’
transmit and wait until onin /* Wait until something is received. */

end

In the next example, WSim executes the statements until the message
UNRECOVERABLE ERROR appears on the screen. When WSim receives this
message, it executes the LEAVE statement, and program execution continues at the
statement following the END statement.
do forever

type ’1234567890’
transmit and wait until onin /* Send message and wait until */

/* something is received. */
if index(screen,’UNRECOVERABLE ERROR’) > 0 then

leave /* Get out of loop when error */
/* occurs. */

else /* Continue looping if error */
nop /* did not occur. */

end

Iterative DO statement
By using the iterative DO statement group, you can repeat a group of statements a
specified number of times. You determine the number of times the statements are
repeated by defining a control variable and providing initial and exit values for
this variable. The control variable is increased by a specified increment value each
time the statement group is executed. You can optionally supply this increment
value in your statement group. If you do not specify an increment value, the
control variable is increased by a value of 1 each time the statements are executed.

When the control variable value exceeds the exit variable value, execution
continues with the statement following the END statement.

The iterative DO statement group uses this syntax:
DO control_variable = initial_value TO exit_value [BY increment_value]

statement
.
.
.

END

260 WSim Script Guide and Reference

The control_variable is a name for an integer variable. The initial_value and exit_value
are integer expressions. The increment_value is an integer constant or an integer
variable.

The following example shows a simple iterative DO statement group.
do i=1 to 5

type "Hello"
transmit using PF8

end

This example types “Hello” and transmits it using the PF8 key five times.

Controlling DO statement group execution
You can use the LEAVE and ITERATE statements to execute parts of DO loops
selectively. These statements are not valid for simple DO statement groups. As
indicated previously, the LEAVE statement causes you to leave a DO loop. The
ITERATE statement enables you to skip to the next iteration of a DO loop without
completing the current iteration of the entire statement group.

You can use the LEAVE and ITERATE statements only inside repetitive DO
statements; they apply only to the innermost loop of which they are a part.

In the following example, the LEAVE statement enables the program to write the
string “Hello” to the operator three times.
a = 1
do forever

if a = 4 then
leave

else
nop

say ’Hello’
a = a + 1

end

In the next example, the numbers 0-19 and 21-99 are transmitted; the number 20 is
not.
do a = 0 to 99

if a = 20 then
iterate

else
nop

type char(a)
transmit

end

Using conditions and relational operators
Statements that control program flow use conditions to determine what the
program does next. Conditions in statement groups are evaluated as being either
true or false. A condition is true if the relationship specified in the condition exists
(for example, a = b is true if the value of a is the same as the value of b). A
condition is false if the specified relationship does not exist.

An STL condition consists of relational expressions. A relational expression
contains two expressions with a relational operator between them. Relational
operators establish relationships between expressions. You can evaluate whether
expressions are equal, unequal, greater than or less than, greater than or equal to,

Chapter 18. Controlling STL program flow 261

or less than or equal to one another. The relational operators enable you to
compare the expressions on either side of the operator.

A condition involving a single relational expression is called a simple condition. A
condition involving two or more relational expressions joined by logical operators
is called a complex condition.

Note: If you use DBCS data in your conditions, see “Logic testing DBCS data” on
page 272.

Simple conditions
The syntax for a simple condition is the following:
expression relational_operator expression

Note: There are some restrictions on expressions used in relational expressions.
These restrictions are discussed later in this section.

An expression can be a variable, constant, function, or any combination of these
joined by arithmetic operators (for integers) or string operators (for strings). Note
that you must have the same type of expression (bit, integer, or string) on both
sides of the relational operator.

Table 13 lists the STL relational operators and the data types each can be used
with.

Table 13. STL relational operators and associated data types

Operator Meaning Data Types

= equality integer, string, bit

¬=, ><, <> inequality integer, string, bit

<=, =<, ¬> less than or equal integer, string

>=, =>, ¬< greater than or equal integer, string

< less than integer, string

> greater than integer, string

&= test under mask string

Simple bit conditions
Bit conditions test only equality and inequality because there are only two possible
values for a bit variable: ON or OFF. The syntax for a bit condition is the
following:
bit_expression1 [relational_operator bit_expression2]

Note: In a bit expression, bit_expression1 cannot be a bit constant.

The following examples show bit conditions used in IF statements. These
conditions can also be used in other statements that control program flow such as
DO statement groups and SELECT statement groups.
if something_received = on then /* A bit variable is compared */

/* for equality with the */
/* bit constant ON. */

if something_received –= on then /* A bit variable is compared */
/* for inequality with the */
/* bit constant ON. */

262 WSim Script Guide and Reference

if current_state = desired_state then /* A bit variable is compared */
/* for equality with */
/* another bit variable. */

To simplify comparisons, STL provides a shorthand method of comparing whether
a bit variable is equal to the bit constant ON. Using this method, the condition
only includes bit_expression1.

The two IF statements shown in the following example have the same effect. One
uses the normal bit condition syntax and the other uses the shorthand.
if something_received = on then /* Normal bit condition syntax. */

if something_received then /* Shorthand syntax. */

Simple integer conditions
Simple conditions involving integer expressions can use all of the STL relational
operators except the test under mask operator (&=). The syntax for integer
expressions is the following:
integer_expression relational_operator integer_expression

The following examples illustrate simple integer conditions used with IF
statements.
if count = 5 then /* An integer variable is compared for */

/* equality with the integer constant 5. */

if count >= max_count + 5 then /* An integer variable is compared for */
/* being greater than or equal to the */
/* value of an integer expression. */

if count + 1 = max_count then /* An integer expression is compared for */
/* equality with an integer variable. */

Simple string conditions
You can use all of the STL relational operators in simple conditions involving
string expressions. The syntax of a simple string condition is shown below:
string_expression relational_operator string_expression

Note: If the strings are of unequal length, the shorter string will be padded
logically on the right with blanks in evaluating the condition.

The following examples show how to use string conditions with IF statements.
if message = ’Target not found.’ then /* String variable is compared */

/* for equality with a string */
/* constant. */

if message = test_message then /* String variable is compared */
/* for equality with a */
/* string variable. */

if message –= msgA||msgB then /* String variable is compared */
/* for inequality with a string */
/* expression. */

if substr(message,4,1) = ’*’ then
/* The fourth character of a string variable is */
/* compared for equality with the character ’*’. */

Chapter 18. Controlling STL program flow 263

Test under mask operation
Use the test under mask operator to compare a string variable with a mask byte. A
mask byte is a 2-digit hexadecimal string constant. You may want to make this
type of comparison when you want to test only certain bits in a byte (character) of
string data.

The test under mask operator uses the &= symbol. The syntax for the comparison is
either of the following:
string_variable &= mask_byte

substring_function &= mask_byte

The test under mask operator compares the mask byte with the leftmost byte in
the string on the left side of the comparison. You can use the substring function to
select a particular byte in a string. See “The SUBSTR function” on page 250 for
information about the substring function.

The condition is true if each bit specified as ON in the mask is set ON in the
leftmost byte on the left side of the comparison. In other words, the system
performs a bitwise logical AND operation on the left-side byte and the mask byte.
If the result of the AND operation is the same as the mask byte, the condition is
true, unless the mask byte is X'00'.

The following example illustrates how this comparison is used.
a = ’0F’x
if a &= ’0C’x then ... /* In this example, the condition is true. */

In the preceding example, the string variable “a” has a value of X'0F'. The bit
configuration of “a” is B'00001111'. The mask byte is X'0C' which has a bit
configuration of B'00001100'. When WSim performs the bitwise logical AND
operation, the result is the following:
00001111 (This is variable "a," which has the value ’0F’x.)
00001100 (This is the mask byte, which has the value ’0C’x.)

00001100 (This is the result of the bitwise logical AND operation.)

Note that each bit that is set ON (has a value of 1) in the mask byte is also set ON
in the left-side byte (the variable “a”). Thus, the comparison is true.

The following condition is false:
a = ’0F’x
if a &= ’1C’x then ... /* This comparison is false. */

The bitwise logical AND operation for this example gives the following result:
00001111 (This is the variable "a," which has the value ’0F’x).
00011100 (This is the mask byte, which has the value ’1C’x.)

00001100 (This is the result of the logical AND operation.)

In this case, every bit that is set ON in the mask byte is not set ON in the leftmost
byte of the comparison (“a”). The comparison is false.

The following examples show additional test under mask conditions, indicating
which are true and which are false.
a = ’0F’x

if a &= ’01’x then ... /* Condition is true. */

264 WSim Script Guide and Reference

if a &= ’09’x then ... /* Condition is true. */

if a &= ’11’x then ... /* Condition is false. */

b = ’Hello’ /* In hex, Hello is ’C885939396’x. */

if b &= ’C0’x then ... /* The leftmost byte is ’C8’x. */
/* The condition is true. */

if substr(b,2) &= ’C0’x then ... /* The SUBSTR function selects */
/* ’85’x as the byte to be tested. */
/* The condition is false. */

Complex conditions

A complex condition involves two or more simple conditions joined with one of
the logical operators: AND (&) or OR (|). If a complex condition involves two
simple conditions joined with AND, the condition is true only if both simple
conditions are true. If a complex condition consists of two simple conditions joined
with OR, the condition is true if one or both of the simple conditions are true.

You can code multiple simple conditions in a complex condition. The logical
operators do not have an order of precedence like the arithmetic operators do, so
complex conditions are evaluated left to right unless you use parentheses to group
simple conditions.

In the following example, the condition is true if both “a” and “b” are 1 or if “c” is
1.
if a = 1 & b = 1 | c = 1 then ...

The condition in the following example is true only if “a” is 1 and either “b” or
“c” is 1.
if a = 1 & (b = 1 | c = 1) then ...

Chapter 18. Controlling STL program flow 265

266 WSim Script Guide and Reference

Chapter 19. Generating messages for an STL program

Defining messages to be transmitted is a major part of any STL program. For
simulated display terminals, you can think of this task as mimicking the actions of
the terminal operator. For nondisplay terminals, you will code the type of
messages they normally send.

This chapter discusses how to perform the following tasks:
v Simulate keyboard actions
v Simulate DBCS data entry
v Simulate other types of text entry
v Obtain data from outside sources
v Simulate operator decisions
v Generate message text with user tables
v Identify cursor position and display characteristics
v Log on and off terminals.

Simulating keyboard actions
When simulating a terminal operator's activity, you can simulate the following
actions:
v Entering text from a keyboard
v Using keyboard keys to perform functions
v Using the cursor movement keys to position the cursor.

Simulating keyboard text entry
You can simulate an operator entering text at the keyboard by using the TYPE
statement. The syntax of the TYPE statement is the following:
TYPE string_expression

The TYPE statement puts the specified information into a buffer, but it does not
transmit the message or stop program execution for the terminal. WSim does not
transmit the message until it executes a TRANSMIT statement. (See “Using the
TRANSMIT statement” on page 285 for a discussion of the TRANSMIT statement.)
Thus, you can build long messages with TYPE statements and the various device
key statements before transmitting them. See “Simulating device keys” on page 268
for information about the device key statements.

When using the TYPE statement, you can use any combination of string constants
and variables to make up your string expression. You can also use multiple type
statements. For example, to simulate an operator entering the phrase EDIT
MYDATA at a keyboard, you can use any of the four following sections of code.
type "EDIT MYDATA"

or

file = "MYDATA"
type "EDIT" file

or

© Copyright IBM Corp. 1983, 2015 267

action = "EDIT"
file = "MYDATA"
type action file

or

type "EDIT " /* Note: Messages may be "built" */
file = "MYDATA" /* using multiple TYPE statements. */
type file

When building messages using multiple type statements, string expressions on
subsequent TYPE statements are concatenated onto the previous messages without
an intervening blank. This is why the string expression on the first TYPE statement
in the last example includes a terminating blank. However, string expressions on
the same TYPE statement (as shown in the third example) include blanks as they
are coded. This is because the string variables or string constants are separated by
the blank operator X'40', which inserts a blank when the strings are concatenated.
See Chapter 17, “Understanding the elements of an STL program,” on page 233 for
more information about string concatenation operators in string expressions.

Note: If you are simulating SNA devices, WSim generates chaining headers
automatically for your TYPE statements. If you need more exact control of what
goes in each chain, you will need to use the SETRH statement to define the chains.

If you want to repeat a particular character in your message, you can use the
REPEAT function. Its syntax is the following:
REPEAT(character,count)

The character is the character to be repeated; count is the number of times to repeat
the character. For example, you could repeat the character A five times in your
message:
type repeat(’A’,5)

Simulating device keys
STL provides a number of statements that simulate the operator pressing various
keys. These device key statements are used primarily for simulated terminals
interacting with full-screen applications.

The device key statements are listed alphabetically with other keyword statements
in Chapter 25, “Reference to STL statements,” on page 355. Special purpose keys
are available for the following display devices:
v IBM 3270 Information Display System
v IBM 5250 Display System

The device key statements and AID identifiers that can be used for each terminal
are listed in Chapter 27, “Keys valid for particular devices,” on page 501. AID
identifiers are discussed in “Using the TRANSMIT statement” on page 285.

There are several types of device key statements:
v Keys to change screen attributes
v Keys to edit text
v Keys to move around the screen
v Keys that perform other miscellaneous functions.

268 WSim Script Guide and Reference

Chapter 25, “Reference to STL statements,” on page 355 provides details about
syntax for these statements, how they are used, and which devices they can be
used with. The statements are listed here by their functions so that you will know
which keys can be simulated.

Keys to Change Screen Attributes

Device Key
Statement

Function

CHARSET Select a character set for data input

COLOR Select a color for displaying data input

HIGHLITE Select highlight options for displaying data input.

Keys to Edit Data

Device Key
Statement

Function

DELETE Delete beginning with the character at the cursor

DUP Duplicate

EREOF Erase to end of field

ERIN Erase input

FM Field mark

INSERT Insert

LCLEAR Local clear

Keys to Move the Cursor Around on the Screen

Device Key
Statement

Function

BTAB Back up one input field

CTAB Move to next input field if not at the beginning of an input field
(conditional tab)

FLDADV Move to next input field on 5250 terminal

FLDBKSP Move to previous input field on 5250 terminal

FLDMINUS Field minus (F-) on 5250 terminal

FLDPLUS Field exit or Field plus (F+) on 5250 terminal

HOME Move cursor to beginning of first input field on screen

JUMP Move cursor to specified partition and make it active

NL Put cursor on a new line

SCROLL Scroll up or down in displayed data

TAB Move to the next input field on the display screen.

Keys for Other Purposes

Device Key
Statement

Function

CURSRSEL Select the field the cursor is in

RESET Simulate action of Reset key

Chapter 19. Generating messages for an STL program 269

SYSREQ Simulate action of SNA SYSREQ key.

Note: CURSRSEL stops program execution for some data fields. See “CURSRSEL”
on page 398 for information about limitations on using the CURSRSEL statement.

The LIGHTPEN statement performs much the same action as the CURSRSEL
device key statement. It simulates selection of the cursor location field using a
Selector Light Pen on a display terminal. This statement can be used for simulating
3270 and 5250 terminals. Like CURSRSEL, the LIGHTPEN statement stops
program execution for some data fields. See “LIGHTPEN” on page 415 for details
about syntax and usage.

Like other device key statements, the keywords listed in this section are the first
element in a statement. For example, to simulate an operator pressing the HOME
and EREOF keys, you could code the following statements:
home
ereof

The FM, NL, and TAB statements can also be coded as functions within a TYPE
statement. Note that these functions can only be used in a TYPE statement. These
functions enable you to have the operator press a key in the middle of a TYPE
statement, as shown in the following example.
type ’This is field 1’tab()’and this is field 2.’

You can use the field mark (FM) and newline (NL) functions in the same way.
These three functions return strings equivalent to the effect of executing the TAB,
FM and NL statements.

The following statements produce the same results as the single TYPE statement
shown in the previous example:
type ’This is field 1’
tab
type ’and this is field 2.’

You can use whichever method is most convenient for you.

You can simulate device keys that transmit messages to the system under test by
including them on a TRANSMIT USING statement. See “Using the TRANSMIT
statement” on page 285 for more information about this statement and the keys
you can simulate with it.

Simulating cursor movement
Simulating movement on a panel is especially useful when your simulated
terminal is interacting with a full-screen application such as Interactive System
Productivity Facility (ISPF). These applications usually define certain areas of the
screen as fields that will accept operator input. The operator must move the cursor
to these fields using the cursor movement keys, tab keys or some other key that
alters the cursor location, such as NL for a new line.

You can also position the cursor with the CURSOR statement. You can use this
statement to simulate the arrow keys or to place the cursor where you want it
without simulating keys.

270 WSim Script Guide and Reference

You can use the CURSOR statement either to position the cursor at an absolute
screen location or to move the cursor up, down, left, or right relative to its current
location. The syntax for this statement follows:
CURSOR({integer_expression}[,integer_expression])

{direction}

If you use two integer expressions, the first is the row and the second is the
column. If you use one of the directional words ("UP", "DOWN", "LEFT", or
"RIGHT") with an integer, the cursor moves the given number of characters in the
specified direction. If you use an integer alone, the cursor is positioned at that
offset into the screen.

The following examples position the cursor at the locations given.
cursor(1,1) /* Positions cursor at row 1, column 1. */
cursor(1000) /* Positions cursor at screen offset 1000. */
row_number = 12
column_number = 40
cursor(row_number,column_number + 5) /* Positions cursor at row 12, */

/* column 45. */

The following examples move the cursor relative to its current screen location.
cursor("up") /* Moves cursor up one row. */
cursor("down",5) /* Moves cursor down 5 rows. */
count = 20
cursor("right",count*3) /* Moves cursor right 60 columns. */

The following statements show the different ways that device key statements can
be coded to move the cursor. For example, to place the cursor at the beginning of
the third input field on the current screen, you could code:
home
tab
tab

Simulating the SNA attention key
You can simulate the SNA attention key by using the following statement:
snacmnd(signal,’00010000’x)

This statement causes a transmit interrupt. See “Interrupting program execution”
on page 286 for information about how and when terminals transmit messages.

Simulating DBCS terminals
WSim supports simulation of 3270 DBCS terminals that send and receive messages
with DBCS data. STL supports entry of DBCS data by either entering the DBCS
data directly from a 3270 DBCS display into the STL program or using the built-in
DBCS functions such as SB2MDBCS(string) to create DBCS data at STL program
execution time.

When you enter DBCS data into the program from a 3270 DBCS display, the DBCS
data is identified by wrapping Shift-Out (SO) (X'0E') and Shift-In (SI) (X'0F')
characters around the DBCS data. DBCS data entered in this manner is called
literal text DBCS data. You can enter literal text DBCS data as string data and
within comments. DBCS data identified using SO and SI characters is also referred
to as a “DBCS subfield” or DBCS data in a mixed string.

Chapter 19. Generating messages for an STL program 271

In the following examples and discussion, the SO character is represented using a
“<”, the SI character is represented using a “>”, and the first byte of each DBCS
character, which is referred to as the ward byte, is represented using a “.”
character.

The following examples enter DBCS data into the simulated screen. The
SB2MDBCS(string) function creates a mixed string containing a DBCS subfield with
ward 42 (EBCDIC) DBCS data from the input string.
type ’<.A.B.C>’ /* DBCS data entered using 3270 DBCS display */
type sb2mdbcs(’ABC’) /* Ward 42 (EBCDIC) DBCS data via function */

You can code literal text DBCS data and single-byte character set (SBCS) data
within the same mixed string, as shown here.
type ’<.D.B.C.S> and SBCS’ /* Mixed string from 3270 */
type sb2mdbcs(’DBCS’) || ’ and SBCS’ /* Mixed string using function */

WSim uses the SO and SI characters to identify DBCS data. The only exception to
this rule is for a 3270 DBCS field when any string data is accepted and assumed to
be DBCS data.

Note: Functions that are not specifically for DBCS data perform at the byte level
and not at the character level.

Logic testing DBCS data
DBCS data is identified on a simulated 3270 screen by being in a DBCS field,
having SO and SI characters wrapped around the DBCS data, or having the
character attributes indicate DBCS data. The DBCS data in a message sent or
received may or may not have SO and SI characters included.

Because of the above situation, you must carefully think out the logic testing of
DBCS data. For example, if the DBCS data “.A.B.C” is located in a DBCS field or
identified by character attributes as DBCS data, you need to code the logic test as
follows to obtain a true result.
if index(screen,dbcsdel(’<.A.B.C>’)) > 0 then say ’True’

Note: The DBCSDEL(string) STL function deletes the SO and SI characters from
the literal text DBCS data.

If the DBCS data on the screen contains SO and SI characters such as “<.A.B.C>”,
the logic test does not require the use of the DBCSDEL(string) function to delete
the SO and SI characters. The following logic test obtains a true result in this case.
if index(screen,’<.A.B.C>’) > 0 then say ’True’

Note: SI/SO pairs of characters that result from DBCS data ending on one record
and continuing again on another record, however, are removed from the resulting
string.

Simulating other types of text entry
You can use the STRIPE statement to generate text to simulate message data to be
transmitted to the system under test by a magnetic stripe reader. This statement
can be used only when you are simulating 3270. You must provide the data to be
transmitted. The syntax of this statement is the following:
STRIPE stripe_data

272 WSim Script Guide and Reference

The stripe_data must be a string expression. The following example shows how this
statement is used.
stripe ’123456789’ /* Send code to the host. */

Unlike the TYPE statement, which only puts text in a buffer, the STRIPE statement
puts the text in a buffer and transmits it. The simulated terminal stops moving
through the STL program until the next time it is ready to generate a message. See
“Interrupting program execution” on page 286 for information about how and
when terminals transmit messages.

Obtaining data
You can use string functions to generate data to include in your messages or to
evaluate incoming messages. The data provided can be used to simulate data from
a display terminal, to compare against incoming data, or to provide data to the
operator or the log data set.

Using random numbers
You may want to use random numbers as part of your message text. This can be
useful when generating identification numbers, order numbers, or other
information entered by the operator. STL provides two functions that generate a
random number:
v RANDOM()
v RNUM().

The RANDOM function returns an integer random number. The syntax for this
function is the following:
RANDOM({’RN’,rn_number}|{low,high})

Inputs to this function can be either a range specified by the RN statement on the
network definition or a low and high value specifying the range in which the
random number must lie. The rn_number is the label for the RN statement defining
the range. See Part 1, “WSim language statements,” on page 1 for more
information about the RN statement. If you specify a low and high value, the low
value can be an integer expression from 0 to 2147483646 and the high value from 1
to 2147483647. The low value must be less than the high value.

The RNUM function returns an EBCDIC string representing a random number. The
syntax for this function is the following:
RNUM({’RN’,rn_number[,length]}|{low,high[,length]})

The inputs to this function are the same as for the RANDOM function except that
you can specify a length for the returned string. The length can be from 1 to 10. If
you do not specify a value, 10 is used. If the random number is shorter than the
length, it is padded with leading zeros.

You could assign a random number from 0 to 300 to a string variable like this:
random_number = rnum(0,300)

Obtaining the date and time
Frequently, terminal input includes the current date and time, whether the operator
types it or whether the system provides it. Additionally, you may want to use the
date and time as elements of conditions in your programs. STL provides functions

Chapter 19. Generating messages for an STL program 273

that supply date and time information. Only the DATE and TOD functions use
arguments. The following list displays the date and time functions and the data
they return.

Function Returns

CMONTH() Name of the current month in mixed case (January, February, ... , December)

DATE() Current date.
Note: There are numerous formats for displaying the date. See “DATE” on
page 463 for more information.

DAY() Number of the current day of month as a 2-character string (01-31)

MONTH() Number of the current month as a 2-character string (01-12, where
01=January and 12=December)

TOD() Current time in the form HHMMSSTH (hours, minutes, seconds, tenths,
hundredths)

YEAR() Last two numbers of the current year as a 2-character string.

See Chapter 25, “Reference to STL statements,” on page 355 for more information
about these functions.

Using device IDs
STL supplies a number of functions that return IDs for the network, terminals,
lines, devices, physical units, and logical units that you are simulating. These
functions are listed in “Identifying network resources” on page 309. They are
discussed in detail in Chapter 26, “Reference to STL functions,” on page 449.

Use these functions whenever you want to use a terminal or device name in a
message you send to the terminal operator, the log data set, or as a message to
your system under test. You can also use these functions when setting up
conditions to test messages sent and received.

For example, you might want to use the device name when logging on to your
system. You could do this with the following statement:
type ’Logon’ id()

The ID function returns the name of the device that is executing the STL program.

Simulating operator decisions
The data entered by a terminal operator is often influenced by the contents of the
current panel or by other factors such as the name of the current application or the
last message received. A real operator makes decisions and enters data accordingly.
As an STL programmer, you can simulate operator decisions by controlling the
logical flow of your program. See Chapter 18, “Controlling STL program flow,” on
page 255 for information about controlling program flow in STL.

For example, if you want your STL program to generate and transmit the message
“Hello there” if the value of the integer variable “count” is 1 and to generate the
message “Goodbye there” if the value is anything else, you can use the following
code:
if count = 1 then

type ’Hello’
else

type ’Goodbye’
type ’ there’
transmit

274 WSim Script Guide and Reference

Using user tables
WSim enables you to set up user tables so that you can use predefined data either
in a random or a defined sequence as a part of your messages. A user table is a list
of string constant entries in a table. The table is a one-dimensional array.

You can use entries in user tables as data for your messages or as data against
which incoming information can be compared. For example, you could include a
list of order quantities in one table and a list of colors in another. You could
combine information from these tables to define various orders in your messages.
Or, you might want use a table to provide logons and passwords for your
simulated terminals and its operators.

WSim provides statements enabling you to define user tables. In addition, STL
functions provide the ability to select table entries and to compare entries with a
given source string. The following sections discuss these capabilities.

Defining user tables
In STL, you define user tables with the MSGUTBL statement group. See “Using
declarative statements” on page 242 for information about declaring user tables in
your STL program.

Selecting entries in a user table
After you use the MSGUTBL statement group in your STL program to define a
table, you can select entries from the table in several ways.

Each entry in a user table has an index, or number, that WSim uses to identify the
entry. The first entry in the table has an index of 0. The UTBL function enables you
to select table entries in the following ways:
v By index number
v Randomly
v Randomly using a defined distribution.

The syntax of this function is the following:
UTBL(utbl_name,{index_number})

{’R’}
{’Rn’}

The utbl_name is either the name of an MSGUTBL declarative statement or the
number of a UTBL defined in the network definition. WSim will look in this table
for the entries. The second argument describes how the entry is to be selected. The
index_number option enables you to enter the number of the entry to be used. The
'R' option means that the entry should be selected randomly. The 'Rn' option
means that you enter a number n that refers to the label of a UDIST statement on
your network definition. The UDIST statement defines a probability distribution to
use in choosing entries from a user table. See , SC31-8945 for information about
this statement.

The following example shows how the various selection methods are used.
Remember that the first entry in the table has the index number 0.
mynames: msgutbl

’Mary’
’Joe’
’John’
’Sue’

Chapter 19. Generating messages for an STL program 275

endutbl
.
.
.

a = 1
b = 2
name = utbl(mynames,0) /* Mary is returned. */
name = utbl(mynames,a+b) /* Sue is returned. */
name = utbl(mynames,’R’) /* A random entry is returned. */
name = utbl(mynames,’R3’) /* A random entry with the distribution */

/* defined by UDIST number 3 in the */
/* network definition is returned. */

.

.

.

The UTBLMAX function enables you to loop through an entire user table
sequentially. It returns the index (the number) of the last entry in your user table.
Its syntax is the following:
UTBLMAX(user_table)

For user_table, enter the name of the table in which WSim will look for entries. The
following example shows how you can use this function:
do i = 0 to utblmax(mynames) /* Loop through all entries of */

/* the user table named "mynames". */
type utbl(mynames,i) /* During each loop, simulate the */

/* operator typing the next */
/* entry in the table named "mynames". */

end

Comparing entries
Use the UTBLSCAN function to compare each entry of a user table with a source
string. This function enables you to determine if a message you receive matches a
table entry.

The UTBLSCAN function returns a bit value of ON if an entry matches the source
string and OFF if one does not. Optionally, it sets an integer variable to the index
number of the user table entry that matches the target string.

The syntax of the UTBLSCAN function is the following:
UTBLSCAN(source,utbl_name[,integer_variable])

In this function, source is the string expression for which the specified UTBL or
MSGUTBL is to be searched. The utbl_name is either the number of a UTBL defined
in the network definition or the name of an MSGUTBL declarative statement. The
integer_variable is an optional argument indicating the name of an integer variable
to which the matching UTBL entry's index number is assigned if a table entry
match is found. If no match is found, the value of integer_variable remains
unchanged. When using this number, remember that user tables begin with entry
number 0.

This function is usually used in conditions. The following example uses the table
defined previously.
if utblscan(’Mary’,mynames) = on then /* Condition met. */

276 WSim Script Guide and Reference

Identifying cursor position and display characteristics
When you are generating data to send, you may need to know the current cursor
position. You may also want to know the size of your display screen. Additionally,
since an operator or an application can change screen attributes on a 3270 display
terminal, you may want to be able to check the attributes of a particular location.
For example, you could use the cursor position or screen attribute as a point for an
operator decision in your program. If the cursor is not at the top of the screen, you
could have the operator press the Home key. If a particular field is green, you
could have the operator change it to red.

Three functions enable you to identify the current cursor position: CCOL, CROW,
and COFF. These functions return the current cursor column, row, and offset,
respectively, for display devices. Results of these functions for nondisplay devices
are unpredictable. These functions do not use arguments.

The CCOL and CROW functions return the row or column relative to the entire
screen size for the simulated device beginning with row 1 and column 1. The
COFF function returns the cursor offset. The cursor offset is the cursor location
relative to the beginning of the screen or the currently active partition for devices
that support partitioning. The first position of a screen or partition is offset 0.

The CPOS function enables you to determine if the current cursor row and column
matches those specified as function arguments. It returns a bit value: ON if the
column and row specified match the current cursor position, OFF if they do not.
Its syntax is the following:
CPOS(row_number,column_number)

In this function, row_number is the number of the row to be matched and
column_number is the number of the column. Both must be integer expressions. If
an integer constant is used, it must be a number from 1 to 255.

You may want to use the number of columns or the number of rows on your
display terminal in your program. The NUMCOLS function returns the number of
columns available on the display terminal you are simulating. The NUMROWS
function returns the number of rows available on the display terminal you are
simulating. These functions return unpredictable results for nondisplay terminals.

The ROWCOL function enables you to determine the screen offset of the specified
row and column. Its syntax is shown below:
ROWCOL(row,column)

In this function, row and column reference the position on the screen for which you
want to determine the offset. This function can only be used when coded as the
offset for the SUBSTR or ATTR3270 functions.

Your application or your terminal operator may be able to change screen attributes.
To determine screen attributes for a particular screen location on a 3270 display
terminal, you can use the ATTR3270 function. This function provides information
about the standard field, extended field, and character attribute values associated
with a screen location. These attributes provide information about screen format
and field and character highlighting and color, among others.

The syntax for this function is the following:
ATTR3270(screen_location[,length])

Chapter 19. Generating messages for an STL program 277

The screen_location identifies the point on the screen for which the attributes are to
be returned. The first screen position is offset 0. Optionally, you can specify a
length for the attribute string to be returned. This length determines how many
characters and thus how much information is returned by the function. The length
can be an integer from 1 to 11. If you do not include a length, nine characters are
returned.

See “ATTR3270” on page 449 for more information about the values returned by
this function.

Logging on and off an application
Logging on and off your system is a unique task. If you are using an SNA
network, special STL commands exist that enable you to perform these tasks
efficiently. These commands are discussed in the following sections. Also provided
are general logon instructions for other types of terminals. See , SC31-8945 for
specific information about how to log on and off other terminal types, sample
scripts, coding requirements for specific terminal types, and information about
network definition requirements.

As with real terminals, a terminal that WSim simulates must first log on to the
system (or application) under test before it can generate meaningful messages.
Your application and the type of network you are using determine the logon code
that you must use.

Typically, your logon code is placed in a procedure by itself. This procedure can be
identified in the FRSTTXT operand on various device statements in your network
definition. See Chapter 23, “Combining STL programs and network definitions,” on
page 325 for more information on integrating network definitions and message
generation decks.

If you are simulating LUs in an SNA network, you may need to use the special
SNA logon and logoff statements provided by STL. If you are simulating other
types of terminals, you will have to provide the necessary logon and logoff
commands.

Logging on SNA LUs
Logging on an LU on an SNA network may require a special logon sequence,
depending on the values that have been established for the LU.

In SNA, an LU can initiate a session with another LU. Normally, each LU initiates
a session by sending an INITIATE SELF request unit (RU) to the host. An LU that
sends the INITIATE SELF RU is called an initiating LU (ILU). An ILU can be a
primary or a secondary LU.

Use the following operands in your network definition to define your LU sessions.
These operands should be coded on the device statement in your network
definition.

Operand Function

MAXSESS Specifies the number of sessions and whether a simulated LU is to be
secondary or primary.

INIT Specifies whether the primary or secondary LU is to initiate sessions.

RESOURCE Defines the name of the simulated LU's partner.

278 WSim Script Guide and Reference

For a further explanation of these operands, see , SC31-8945.

If the ILU is a primary LU, it eventually receives information from its host that it
converts into a BIND RU and sends to its secondary LU partner. If the ILU is a
secondary LU, it must wait after sending the INITIATE SELF RU until it receives a
BIND from its primary LU partner.

If your simulated LU is the initiating LU and the RESOURCE operand was coded
on the DEV or LU statement, you do not need to include session establishment
code in your STL program; your STL program will begin executing after the BIND
RU has been successfully sent (and responded to), whether your simulated LU is
primary or secondary. If, however, your simulated LU is to be the initiating LU
and the RESOURCE operand was not coded on the DEV or LU statement, you
must include session establishment code at or near the beginning of your STL
program.

When the RESOURCE operand is coded, execution of the STL program may begin
before the LU receives the BIND. To handle this situation, the program should wait
until the simulated resource has completed the logon. You can make the program
wait by creating a loop in which you wait until the BIND is received. See “The
sample STL program and network definition” on page 346 for an example of this.

If the RESOURCE operand is not coded, use the INITSELF, SNACMND, or TYPE
statement to establish an LU session for an ILU. The INITSELF statement sends an
INITIATE SELF format 0 RU to the simulated LU's host. When using the INITSELF
statement, you must specify the name of the desired partner LU and can optionally
specify the name of a MODE table entry and user data, for example, a password.
The syntax of the INITSELF statement is the following:
INITSELF(resource[,[mode][,[user_data][,log_byte]]])

resource is the name of the LU with which you want to establish a session. If the
resource is a string constant expression, it must be from 1 to 8 characters long. The
mode is an entry from a logon mode table. Your simulation determines whether
you need to include this argument. You may also need to include user_data such as
a user password. The log_byte specifies a byte of user data to be associated with all
data transmitted and received. The log_byte remains active until data is “typed” on
a TYPE statement and transmitted on a TRANSMIT statement or until an
INITSELF, TERMSELF, or SNACMND statement is issued. This byte gives users of
the Response Time Utility a way to identify transactions when gathering statistics
by the various “log_byte” categories.

The SNACMND statement sends an SNA command to the simulated LU's host.
The function of the INITSELF statement is a subset of this statement's function. See
“Using the SNACMND statement” on page 284 for more information about the
SNACMND statement.

For more information about the TYPE statement, refer to “Simulating keyboard
actions” on page 267. The TYPE statement can only be used to establish a session if
you are not running a VTAMAPPL configuration and you are running unformatted
system services.

Suppose, for example, you want your simulated terminal to log on to the
application MYAPPL. You could code the following STL statement to accomplish
this:
initself(’MYAPPL’)

Chapter 19. Generating messages for an STL program 279

In some cases, you may need to include the name of a logon mode table entry and
to set a log byte for the Response Time Utility. The following example will log
your simulated terminal on to MYAPPL using the logon mode table entry
MYMODE and set the log byte to X'AB'.
initself(’MYAPPL’,’MYMODE’,,’AB’x)

In still other cases, you may need user data (such as a password) with the
INITIATE SELF RU. The following examples show how you can specify user data
on the INITSELF statement.
initself(’MYAPPL’,’MYMODE’,’MYPASSWD’) /* Includes mode entry and user */

/* data. */

initself(’MYAPPL’,,’MYPASSWD’) /* Includes user data only. */

The INITSELF statement interrupts the execution of your STL program. The
terminal resumes program execution after the session has been established with the
partner LU.

The following example shows how the INITSELF statement can be coded for a
secondary initiating LU. Note that when execution resumes after the INITSELF
statement, the STL program must check to see if an initial message (a WELCOME
message in the example) has been received. If not, the LU should wait until the
initial message is received, as shown in the following example:
bit logged_on
secinit: msgtxt
/* Logon procedure for secondary LU, INIT=SEC, RESOURCE not coded. */

check: onin index(screen,’WELCOME’) > 0 then logged_on = on

logged_on = off
initself(’MYAPPL’,’MYMODE’,’MYPASSWD’)

/* Now wait for the WELCOME message, if it has not already */
/* been received. */

do while logged_on = off /* Wait until the WELCOME */
wait until onin /* message is received. */
end

deact check

The following example shows how the INITSELF statement might be used within
an STL program for a primary initiating LU.
priinit: msgtxt
/* Logon procedure for primary LU, INIT=PRI, RESOURCE not coded. */

initself(’MYAPPL’)

/* The following code will be executed after the LU-LU session is */
/* established. */

type ’WELCOME. Please enter your name.’
transmit and wait until ...

Table 14 on page 281 summarizes when to use the INITSELF and SNACMND
statements and describes how SNA session establishment affects STL program
execution.

280 WSim Script Guide and Reference

Table 14. Establishing sessions—SNA LUs

LU
Session
Type

INIT=
Operand
Value

RESOURCE=
Operand
Coded?

STL
Statement

Primary

MAXSESS=(x,y)

where x > 0

PRI YES None. (Logon is handled by
WSim. STL execution begins after
session is established.)

NO INITSELF or SNACMND
(Interrupts STL execution. STL
execution resumes after session is
established.)

SEC YES or NO None. (LU does not initiate
session. STL execution begins after
session is established.)

Secondary

MAXSESS=(x,y)

where y > 0

PRI YES or NO None. (LU does not initiate
session. STL execution begins after
session is established.)

SEC YES None. (Logon is handled by
WSim. STL execution begins after
session is established.)

NO INITSELF or SNACMND
(Interrupts STL execution. STL
execution resumes after session is
established.)

Logging off SNA LUs
STL also provides a special statement, TERMSELF, to terminate a session for an
SNA terminal or an LU. TERMSELF ends a session in an orderly fashion and
simulates the normal course of events for an SNA network or LU. The syntax of
this statement is the following:
TERMSELF([resource][,log_byte])

The resource specifies the name of the LU's session partner. If it is not included,
WSim uses the name of the LU's current partner. The log_byte specifies a byte of
user data to be associated with all data transmitted and received. The log_byte
remains active until data is “typed” on a TYPE statement and transmitted on a
TRANSMIT statement or until an INITSELF, TERMSELF, or SNACMND statement
is issued. This byte gives users of the Response Time Utility a way to identify
transactions when gathering statistics by the various “log_byte” categories.

The TERMSELF statement interrupts execution of the STL program and stops
program execution temporarily for the terminal currently executing the program
while WSim transmits the TERMINATE SELF format 0 RU. Execution of your STL
program resumes with the next STL statement. If you want your terminal to
participate in another SNA session at that point, you can include session
establishment code. Otherwise, you can put your terminal in a quiesce state (a
state where it can receive but not respond to messages) by using the QUIESCE
statement.

The SNACMND statement can also be used to terminate a session for an SNA
terminal or an LU. See “Using the SNACMND statement” on page 284 for more
information about the SNACMND statement.

Chapter 19. Generating messages for an STL program 281

Logging on a TCP/IP Telnet 3270 terminal
The following example shows how to log on to a simulated Telnet 3270 terminal.
Notice that the INITSELF statement is not used, since INITIATE SELF is used by
SNA terminals only. This example assumes the application being logged on to will
send an “ENTER LOGON” message when it is ready for the terminal to log on.
wait until onin index(screen,’ENTER LOGON’) > 0 /* Wait for logon message. */

/* The above wait condition ends when the logon message has been received. */

ereof /* Clear input field. */
type ’LOGON ’id() /* Type the logon command. */
transmit using enter, /* Transmit the logon */

and wait until onin index(screen,’READY’) > 0 /* and wait for TSO. */

The TRANSMIT keyword is described in “Using the TRANSMIT statement” on
page 285 and the ONIN keyword is described in “Using the ONIN and ONOUT
statements” on page 292.

Note: The text of logon messages will vary from installation to installation. When
following the above example, be sure the strings specified on the INDEX functions
are correct for your installation.

For information about how to log on other terminal types and examples, see ,
SC31-8945.

Logging off a TCP/IP Telnet 3270 terminal
You can log off your simulated Telnet 3270 terminal by simulating the activity of a
real terminal operator terminating communication with an application. Since each
application may differ in the way this is done, your STL code for logging off will
vary from application to application.

The following examples show two possible logoff sequences. The first shows the
STL code for logging off an application that requires the terminal operator to type
“LOGOFF”. The second shows the code for an application that requires the
operator to press the PF3 key to log off.
/* Example 1 */

/**********************************/
/* Log off by sending the message */
/* LOGOFF to the application. */
/**********************************/
type ’LOGOFF’
transmit and wait until onin index(data,’TERMINATED’) > 0

/**********************************/
/* Put the terminal to sleep. */
/**********************************/
quiesce

/* Example 2 */

/*********************************/
/* Log off by pressing PF3. */
/*********************************/
transmit using PF3 and wait until onin index(data,’TERMINATED’) > 0

/********************************/
/* Put the terminal to sleep. */
/********************************/
quiesce

282 WSim Script Guide and Reference

Notes:

v The procedure for logging off and the text of logoff messages varies from
application to application. When following the preceding examples, be sure that
the strings specified on the TYPE statement and the INDEX function and that
the AID key specified on the TRANSMIT USING statement are correct for your
application.

v Telnet 3270 and 3270E devices automatically reconnect 30 seconds after logoff,
unless quiesced. If it reconnects, the Telnet device comes up as if it were just
starting. Refer to , SC31-8945 for more detail.

Generating SNA terminal messages
To modify SNA messages transmitted by your simulated devices, you can use the
SETTH statement to alter the SNA transmission header and the SETRH statement
to control the chaining of messages and to alter the SNA request/response header.
To send a specific SNA message to the system under test, use the SNACMND
statement.

Using the SETTH statement
Use the SETTH statement to modify the SNA transmission header for a message
built by a TYPE statement. Refer to “SETTH” on page 432 for more information.

Using the SETRH statement
Use the SETRH statement to modify the SNA request or response header for a
message built by a TYPE statement. For example, you can use the SETRH
statement to control the chaining of messages, as is shown in the following
example.
chains: msgtxt
type ’first data’
setrh chain ’first’ on(exc)
transmit
type ’more data’
transmit
type ’even more data’
transmit
type ’last data’
setrh chain ’last’ off(exc)
transmit
type ’only data’
transmit
endtxt

When the STL program executes, the first message sent is a first-in-chain RU. The
next two RUs transmitted for the logical unit are marked as middle-in-chain. If you
omit the SETRH statement and a first-in-chain RU has been sent for a logical unit,
WSim automatically sends subsequent RUs as middle-in-chain. The next message
is transmitted as a last-in-chain RU that requests a definite response from the test
system. WSim does not generate another message for the logical unit until the
response is received. Setting EXC on indicates that this is an exception response.
The last message generated from this procedure is sent as an only-in-chain RU.

When CHAINING=AUTO is specified in the LU definition for a non-display SNA
device, WSim automatically performs the chaining operation on the message text
data using the maximum RU size value from the BIND. Refer to Part 1, “WSim

Chapter 19. Generating messages for an STL program 283

language statements,” on page 1 for more information on these network definition
statements. WSim can use BUFSIZE operand values up to 32767 when building
messages.

For more information about this command, see “SETRH” on page 430.

Using the SNACMND statement
Use the SNACMND statement to specify an SNA command to be sent by a logical
unit to the system under test. WSim builds default SNA headers for the command,
but you can modify the headers with the SETTH and SETRH statements. (Note
that the SETRH statement only works with the LUSTAT SNACMND statement.)
The following example demonstrates how to use the SNACMND statement to
build a SIGNAL RU.
snacmnd(signal,’00010000’x) /* SNA attention key (SIGNAL). */

The SNACMND statement can be used to generate asynchronous SNA data flows.
When the SNACMND statement is the next statement in an STL program, the
SNACMND statement is executed, even if the normal requirements for executing
the program have not been met.

See “SNACMND” on page 434 for more detailed information on the SNACMND
statement.

284 WSim Script Guide and Reference

Chapter 20. Transmitting and receiving messages from an
STL program

WSim enables you to transmit messages from simulated terminals, receive
messages, and take actions based upon messages sent or received.

This chapter discusses the following topics:
v Transmitting messages
v Controlling intermessage delays
v Receiving messages
v Testing asynchronous conditions
v Posting and signaling events.

Transmitting messages
Once a message has been generated, WSim must transmit the message to the
system under test. When WSim transmits a message, program execution for a
particular terminal is interrupted to simulate the time required before an operator
takes another action.

The TRANSMIT statement is the simplest method of sending messages. However,
you will need to use other statements to send messages and interrupt program
execution in specific circumstances. The following sections discuss the use of the
TRANSMIT statement and the other statements you can use to interrupt program
execution.

Note: Do not use the TRANSMIT statement in CPI-C transaction program
simulations. This statement causes program execution to be interrupted for the
CPI-C transaction program. CPI-C transaction programs send messages by using
the CMSEND statement.

Using the TRANSMIT statement
Normally, a message is transmitted from a real 3270 terminal to a host system
whenever the terminal operator presses an attention identifier (AID) key. The
TRANSMIT statement simulates the operator pressing an AID key and instructs
WSim to transmit all previously entered message data, that is, data entered on a
TYPE statement.

The syntax of the TRANSMIT statement is the following:
TRANSMIT [USING aid_key] [LOGGING log_byte]
[AND wait_statement]

The optional parts of the statement are called clauses. You can use these clauses to
specify how the message will be transmitted and whether the terminal should wait
after sending a message.

The valid AID keys appear in the following list.

© Copyright IBM Corp. 1983, 2015 285

CLEAR
CLEARPTN
CMD1-CMD24
CURSRSEL
ENTER

HELP
PA1-PA3
PF1-PF24
PRINT
ROLLDOWN

ROLLUP
SEND
SENDLINE
SENDMSG
SYSREQ

If you do not enter the clause that begins with USING to define the AID key, STL
assumes the default key ENTER. The AID keys that can be used for specific IBM
display devices are listed in Chapter 27, “Keys valid for particular devices,” on
page 501. The LOGGING log_byte clause specifies a byte of user data to be
associated with all data transmitted and received. The log_byte remains active until
data is “typed” on a TYPE statement and transmitted on a TRANSMIT statement
or until an INITSELF, TERMSELF, or SNACMND statement is issued. This byte
gives users of the Response Time Utility a way to identify transactions when
gathering statistics by the various “log_byte” categories.

The wait_statement clause is described in “Using the WAIT UNTIL and QUIESCE
UNTIL statements” on page 298. As an example of how the TRANSMIT statement
is used, consider the following STL code.
type ’hello’
tab
type "My name is" myname
transmit using enter

This set of statements enters data into the current screen field, tabs to the next
screen field, enters data into that field, and instructs WSim to transmit the
generated data to the host application using the ENTER AID.

Note: ENTER is the default AID for the TRANSMIT statement. Thus, you do not
have to include it. The last line of the above program segment could have been
simply coded as TRANSMIT.

You do not have to generate message data using the TYPE statement before a
TRANSMIT statement. Often a real terminal operator presses an AID key without
entering any text, for example, when scrolling through a file. You could include
these statements in your code for a terminal that uses PF8 as its scroll key:
transmit using PF8
transmit using PF8
transmit using PF8

However, unlike the device key statements, the AID keys can only be coded on a
TRANSMIT statement. For example, you cannot use the following code for AID
keys:
PF8 /* This usage is not allowed. */

Interrupting program execution
In STL, each terminal in a simulated network continues through the STL programs
specified for it in the network definition until it encounters a statement that
“stops” program execution. Generally these statements are statements that transmit
a message to the host system. When the terminal “stops” program execution,
WSim interrupts execution of the STL program and sends accumulated message
data. This interruption is called a Transmit Interrupt.

286 WSim Script Guide and Reference

The length of the Transmit Interrupt is discussed in “Controlling intermessage
delays” on page 288. The terminal starts program execution again after the
interrupt expires. During the first terminal's Transmit Interrupt, another terminal
may begin program execution and execute statements in the STL programs
designated on the PATH statement for that terminal in the network definition.

The following statements cause a Transmit Interrupt.
v INITSELF
v SNACMND
v STRIPE
v TERMSELF
v TRANSMIT.

The following statements cause a Transmit Interrupt and stop program execution
for a terminal until the condition associated with the statement is satisfied or the
terminal is reset.
v QUIESCE
v SUSPEND
v WAIT.

The following statements cause a Transmit Interrupt when they are used in certain
fields.
v CURSRSEL
v LIGHTPEN.

The fields that cause these statements to transmit information are determined by
the application's trigger field. When using these fields, data is sent if the cursor is
moved out of the trigger field after the data is entered. See “CURSRSEL” on page
398 for more information about the CURSRSEL statement and “LIGHTPEN” on
page 415 for more information about the LIGHTPEN statement. Since these
statements do not always cause a Transmit Interrupt, use them carefully while
sending data.

The following CPI-C statements may cause a Transmit Interrupt:
v CMALLC
v CMCFM
v CMCFMD
v CMDEAL
v CMFLUS
v CMPTR
v CMRCV

Note: This verb will cause an interrupt only if the receive type is
“receive-and-wait” and no receive data is currently queued. When this verb
causes an interrupt, program execution will stop until either data or status is
received from the partner transaction program.

v CMRTS
v CMSEND
v CMSERR.

A transmit interrupt will only occur if the CPI-C verb results in a request being
issued to VTAM. If the verb fails as a result of a local error that is detected prior to

Chapter 20. Transmitting and receiving messages from an STL program 287

issuing a request to VTAM, a transmit interrupt will not occur. The types of errors
that are typically detected as local errors are parameter checks and state checks.

Controlling intermessage delays
The TRANSMIT statement interrupts the execution of an STL program and stops
program execution for the terminal. The amount of time that each terminal must
wait following a Transmit Interrupt before it begins program execution again is
called the intermessage delay. When conditions are right for the terminal to send
another message and after the intermessage delay, your STL program continues
executing at the statement following the TRANSMIT statement.

Note: Do not use the TRANSMIT statement in CPI-C transaction program
simulations. This statement causes program execution to be interrupted for the
CPI-C transaction program. Intermessage delays apply to the CPI-C verbs that
cause transmit interrupts (as listed above).

The intermessage delay simulates the activity of a real operator, who would
normally require time to view the screen, think about the information, and enter
more data. The Transmit Interrupt and the intermessage delay give other simulated
terminals the opportunity to execute their STL programs and provides time for
WSim to transmit and receive messages, test asynchronous conditions, and execute
asynchronous subset statements. The length of the delay is controlled by a number
of factors. These factors are discussed in later sections.

The following conditions must be met before a terminal can continue executing an
STL program after a Transmit Interrupt:
v Any outstanding wait condition must be satisfied.
v Any outstanding quiesce condition must be satisfied.
v The intermessage delay for the terminal must have expired.
v The INPUT INHIBITED indicator for the terminal must not be set.
v The terminal must not be in the console recovery state, or if it is in the console

recovery state, the terminal operator must enter a message for the terminal from
the console.

v An SNA logical unit must be in the correct SNA state for sending data (for
example, the Change Direction indicator must be in its favor).

The length of the intermessage delay depends on these factors:
v Values for network definition operands:

– DELAY
– UTI or IUTI
– THKTIME
– EMTRATE.

v STL statements:
– DELAY
– WAIT UNTIL
– QUIESCE UNTIL
– SUSPEND
– UTI.

v Load on the WSim system.

288 WSim Script Guide and Reference

You can control some of these factors in your STL program. Others are controlled
in your network definition or in the system.

Using the network definition to control delays
The following operands in your network definition control the length of the
intermessage delay:
v DELAY
v UTI or IUTI
v THKTIME
v EMTRATE.

The DELAY, UTI, IUTI, and THKTIME operands can be coded on the DEV and LU
statements in your network definition. They can also be coded on higher-level
statements and will take effect for all terminals controlled by these definitions.

Note: Since the IUTI operand enables you to set a different UTI value for different
terminals, you will not use it on an NTWRK statement.

The EMTRATE operand is coded only on the NTWRK statement in your network
definition.

The following list describes the function of these operands.

DELAY
This operand, together with the user time interval (UTI or IUTI operand),
specifies the length of the intermessage delay. This value is an integer. It
can be a fixed value, a random value, or a value from a table of delays. It
is multiplied by the UTI to provide the number of seconds for the delay.

UTI or IUTI
These operands are user-specified values that specify the number of
hundredths of seconds by which the DELAY value is multiplied. A
different UTI can be specified for each terminal using the IUTI operand. As
an example, if the UTI for a terminal is 100 and a DELAY value of 5 is
specified for the terminal, the intermessage delay for the device is 5
seconds (500 hundredths of a second).

THKTIME
This operand defines when the intermessage delay is started for a terminal.
If you code THKTIME=IMMED on your network definition, the
intermessage delay starts immediately when the current message is
transmitted. If you code THKTIME=UNLOCK, the delay starts when the
keyboard is unlocked by the host system.

Notes:

v If you are simulating primary logical units, it is recommended that you
code THKTIME=IMMED.

v For CPI-C transaction program simulations, the THKTIME operand is
not applicable. The intermessage delay starts immediately when the
CPI-C request is transmitted to VTAM.

EMTRATE
This operand enables you to specify a message transfer rate for the
network. WSim automatically adjusts the UTI for the network to maintain
the desired message transfer rate.

Chapter 20. Transmitting and receiving messages from an STL program 289

Note: You should not use multiple UTIs if you are using the EMTRATE operand
to control message transfer rates for your network. If you do use multiple UTIs
with the EMTRATE operand, WSim automatically adjusts all of the UTI values.
This adjustment may produce unexpected results if the operator changes the IUTI
for a terminal.

See , SC31-8945 for more complete descriptions of these operands and for further
information about their effect on message transfer rates.

Using STL statements to control delays
Intermessage delays are affected by the following STL statements:
v DELAY
v WAIT UNTIL
v QUIESCE UNTIL
v SUSPEND
v UTI.

These statements perform the following functions:

DELAY
This statement specifies the intermessage delay for the next message the
simulated terminal transmits. The value specified overrides the default
delay only for the next message transmitted by the terminal. WSim
multiplies the value specified on this statement by the UTI value for the
terminal to obtain the duration of the delay in hundredths of seconds. You
may optionally specify a UTI value on this statement. The value for the
DELAY statement can be a fixed value, a random value, or a value chosen
from a rate table.

WAIT UNTIL
This statement can be used by itself or as a clause on the TRANSMIT
statement. It allows you to specify a condition following the UNTIL that
must be met before the terminal can begin program execution again. The
intermessage delay for a terminal begins when the WAIT UNTIL condition
is satisfied. Use of this statement is described in “Using the WAIT UNTIL
and QUIESCE UNTIL statements” on page 298.

QUIESCE UNTIL
This statement enables you to quiesce a terminal, that is, put it to sleep.
The terminal is still logged on and can still receive messages, but it cannot
take any action until either the condition specified following the UNTIL is
met or the operator issues a command to release the terminal.

SUSPEND
This statement enables you to suspend STL execution for a designated time
interval for the terminal.

UTI This statement enables you to change the IUTI value for your terminal. See
“UTI” on page 445 for more information.

If you use a WAIT or QUIESCE statement without specifying a condition, you may
place the terminal in a wait or quiesce state with no obvious means of getting out.
an operator can end a wait state using the F (Console Recovery) command. The
operator can end a quiesce state using the A (Alter) command with the RELEASE
operand.

290 WSim Script Guide and Reference

Evaluating the load on the WSim system
In addition to the network operands and STL statements, the load on the WSim
system also affects the message transfer rate. The number of terminals WSim is
simulating, the complexity and efficiency of the programs the simulated terminals
are executing, and the overall load on the WSim host system can all affect the
length of the intermessage delay for a given simulated terminal. If the load on the
WSim system is too great, a simulated terminal may have to wait for other
simulated terminals to reach an interrupt point in their STL programs before
beginning program execution again, even though its own intermessage delay has
expired. This can be minimized by giving WSim the resources it needs to sustain
the desired rate, such as host processor priority, authorization, and paging.

Consider the potential effects of the system load when designing your simulation.
If longer than expected delays are a possibility, you may want to set up your
system to compensate for them.

Receiving messages
WSim can receive messages for a simulated terminal between messages
transmitted. For all terminal types, WSim will test any outstanding asynchronous
conditions for received messages and then free the received message buffer. For
display terminals, the screen image buffers are updated. Asynchronous conditions
are described in “Setting up asynchronous conditions” on page 299.

Your STL program cannot access messages received during an intermessage delay
when it resumes execution. However, these messages (or portions of them) can be
assigned to STL string variables asynchronously and referenced when the STL
program resumes. This can be especially useful for nondisplay terminals since
these terminals do not have screen buffers that are updated. For more information
about asynchronous conditions and statements, see “Testing asynchronous
conditions.”

For a display terminal, WSim updates the terminal's display buffer when a
message is received. When the STL program resumes after the intermessage delay
expires, the STL reserved variable SCREEN (or BUFFER) reflects the newly
received information.

Note: For nondisplay devices, when the STL program resumes, these variables do
not necessarily contain the information received during the intermessage delay.

Testing asynchronous conditions
WSim uses the time between messages to test whether specified conditions have
been met while the terminal was in the delay state and to take actions based upon
those conditions. The actions also take place while the terminal is in the delay
state. The actions that take place are coded as a special set of statements called
asynchronous subset statements because they can only be coded on specified
asynchronous statements. The conditions and statements are called asynchronous
because they occur outside the flow of normal STL program execution.

Asynchronous statements enable you to specify conditions to be tested when
messages are sent or received and to take action based on the content of the
messages. The messages may be those sent to and received from the host

Chapter 20. Transmitting and receiving messages from an STL program 291

application, or they may be messages from other terminals indicating that specified
events have been completed. WSim evaluates the message and compares its
content to your specifications.

The following asynchronous STL statements enable you to test messages received
and transmitted.

ONIN Defines an asynchronous condition that is to be tested when data is
received by a simulated terminal and the actions that are to be taken if the
condition is true.

ONOUT
Defines an asynchronous condition that is to be tested when data is
transmitted by a simulated terminal and the actions that are to be taken if
the condition is true.

ON SIGNALED
Defines an asynchronous action that is to be taken when the specified
event is signaled.

WAIT UNTIL
Interrupts STL execution and defines an asynchronous condition that,
when met, allows STL program execution to resume. This statement can
also appear as the WAIT UNTIL clause of the TRANSMIT statement.

QUIESCE UNTIL
Interrupts STL execution and defines an asynchronous condition that,
when met, releases the terminal and allows STL program execution to
resume.

Note: The ONIN and ONOUT statements do not apply to CPI-C transaction
program simulations, and will be ignored if specified.

Using the ONIN and ONOUT statements
The ONIN and ONOUT statements enable you to test messages received (ONIN)
or sent (ONOUT) for the existence of specified conditions. The syntax of these
statements is the following:
[label:] {ONIN} [asynchronous_condition] THEN[;] asynchronous_subset_statement

{ONOUT}

If you like, you can include a label to identify each statement. For information
about what can be included in an asynchronous condition, see “Setting up
asynchronous conditions” on page 299. The statement following the THEN is an
asynchronous subset statement that will be executed during the intermessage delay
when the condition is met. These statements are described in “Using asynchronous
subset statements” on page 294.

The following example shows how to use an ONIN statement:
onin then data_received = buffer

When a message is received, the data in the reserved string variable BUFFER
(which contains the device display buffer) is saved in the string variable
“data_received”.

Testing ONIN and ONOUT conditions
Conditions on ONIN and ONOUT statements are available for testing when the
first statement following the ONIN or ONOUT statement is executed. ONIN

292 WSim Script Guide and Reference

conditions are tested for every incoming message destined for the simulated
terminal and ONOUT conditions are tested for every message transmitted by the
simulated terminal.

All ONIN and ONOUT statements in your program are tested each time a message
is received or transmitted. If you do not want an ONIN or ONOUT statement
tested, you must explicitly deactivate the ONIN or ONOUT statement with a
DEACT statement. See “Deactivating ONIN and ONOUT conditions” for more
information about this statement. ONIN and ONOUT statements are automatically
deactivated by WSim at the end of your program (that is, when an ENDTXT
statement is reached and all CALL statements in the program have been
completed).

If more than one ONIN or ONOUT statement is currently active and thus available
for testing, they will be tested in the order of their appearance in your STL
program. The description of these statements in “ONIN and ONOUT” on page 420
provides an example of the testing order.

Deactivating ONIN and ONOUT conditions
ONIN and ONOUT conditions remain active throughout the execution of an STL
program. Thus, when a terminal begins program execution, all ONIN and ONOUT
conditions prior to the point of execution are active and are tested when a message
is received or sent. To prevent testing of conditions, you must explicitly deactivate
them. STL enables you to deactivate specific statements or all ONIN and ONOUT
conditions in a program.

To deactivate a particular statement or group of statements, use the DEACT
keyword followed by the label of the statement or statements, as shown in the
following examples:
/* Example 1 */

test1: onin substr(data,1,4) = ’XXXX’ then gotdata = on
.
.
.
deact test1

/* Example 2 */
acheck: onin index(data,’A’) > 0 then afound = on
bcheck: onin index(data,’B’) > 0 then bfound = on
ccheck: onin index(data,’C’) > 0 then cfound = on
.
.
.
deact acheck, bcheck, ccheck

The statement is used in the same way for ONOUT conditions:
outb: onout substr(data,1,4) = ’xxxx’ then outdata = on
.
.
.
deact outb

If you want to deactivate all ONIN and ONOUT conditions in an STL program,
use the following statement:
DEACT ALL IO ONS

Chapter 20. Transmitting and receiving messages from an STL program 293

Using asynchronous subset statements
Asynchronous subset statements are STL statements that can be executed when an
asynchronous condition is satisfied on an ONIN, ONOUT, or ON SIGNALED
statement. Asynchronous subset statements are executed during the transmit
interrupt.

The asynchronous subset statements are the following:
v For ONIN, ONOUT, and ON SIGNALED:

– ABORT
– CALL
– CANCEL {DELAY|SUSPEND}
– EXECUTE
– Any statement allowed within an EXECUTE procedure except RETURN.

v For ONIN or ONOUT only:
– NORESP.

ABORT Statement: The ABORT statement forces the current STL program to
terminate immediately. All outstanding asynchronous conditions for the program
are deactivated and the next program specified for this terminal on the PATH
network definition statement will begin executing when the current intermessage
delay expires.

For example, you could use the ABORT statement as follows:
onin index(ru,’UNRECOVERABLE ERROR’) > 0 then abort

If the SNA request/response unit contains the specified message, the current STL
program is terminated immediately.

CALL Statement: The CALL statement calls the specified procedure when the
terminal resumes program execution. Use this statement sparingly since it
abnormally alters the flow of control of your STL program. It also resets the wait
condition of your simulated terminal, causing any outstanding wait conditions to
be prematurely satisfied.

You could use the CALL statement as an asynchronous subset statement like this:
onin index(ru,’UNRECOVERABLE ERROR’) > 0 then call errproc

If the SNA request/response unit contains the specified message, the current STL
program calls the procedure “errproc” to terminate the program. See “Reserved
variables” on page 239 for information about using STL reserved variables.

EXECUTE Statement: The EXECUTE statement specifies the name of an STL
execute procedure that is to be executed immediately, during the transmit
interrupt. Execute procedures are a special type of STL procedure that can contain
only a limited set of STL statements. You may use an EXECUTE procedure if you
want to be able to execute the same block of code in separate places in your
program or among several STL programs.

An EXECUTE procedure can perform bit, integer, and string assignments and can
post, signal, and reset events. Statements and functions used with events are
discussed in “Posting and signaling events” on page 300.

The EXECUTE asynchronous subset statement has the following syntax:
EXECUTE execute_procedure_name

294 WSim Script Guide and Reference

The execute_procedure_name is the name for the execute procedure. An execute
procedure is coded like an STL procedure, beginning with an MSGTXT statement
and ending with an ENDTXT statement.

The following statements are not allowed in an execute procedure:
v Device key statements (None of the statements that simulate device keys pressed

by the operator can be used.)
v Flow-of-control statements

– DO FOREVER, DO WHILE, iterative DO, SELECT, and IF
– CALL statement except when coded as an asynchronous subset statement

immediately following the THEN keyword on an ONIN, ONOUT, or ON
SIGNALED statement.

v Transmit Interrupt statements:
– CURSRSEL
– INITSELF
– LIGHTPEN
– QUIESCE
– SNACMND
– STRIPE
– SUSPEND
– TERMSELF
– TRANSMIT
– WAIT.

The following statements also are not allowed:
v CURSOR
v DELAY
v SETRH
v SETTH
v TYPE
v VERIFY.

The following functions are not allowed except as part of an ONIN or ONOUT
statement.
v CPOS
v INDEX
v POSTED
v UTBLSCAN.

The following example shows how the EXECUTE statement can be used to identify
a procedure to be executed asynchronously.
myproc: msgtxt
.
.
.
onin index(screen,’XXX’) > 0 then execute execproc
onin index(screen,’YYY’) > 0 then execute execproc
.
.
.
endtxt

Chapter 20. Transmitting and receiving messages from an STL program 295

execproc: msgtxt /* This is an execute procedure. */
number_received = number_received + 1
post ’RCVEVENT’
endtxt

Any Statement Allowed within an EXECUTE Procedure: This allows you to enter
any statement that you can code within an EXECUTE procedure except RETURN.
See “EXECUTE Statement” on page 294 for a list of statements not allowed within
an execute procedure. For example, you may want to post an event and write out
a message to the operator whenever a message is received. This is shown in the
following example.
onin then do /* If a message is received */

post ’MYEVENT’ /* Post the event ’MYEVENT’ */
say ’MYEVENT posted’ /* Notify the operator */
end

Likewise, you may want to save a data stream asynchronously and use this data
when program execution resumes. The example below shows you how to do this.
onin then gotdata = on /* Get something. */
onin rh &= ’80’x then gotdata = off /* Do not save SNA responses. */
onin gotdata then thisdata = buffer /* Save the buffer when a */

/* non-SNA response is */
/* received. */

type ’Hello’ /* Type text to be transmitted. */
gotdata = off /* Prepare to wait for data. */
transmit and wait until onin gotdata /* Transmit text and wait for a */

/* non-SNA response. */
gotdata = off /* Reset for next wait. */
if thisdata = ’Goodbye’ then /* Partner sent Goodbye. */

do
.
.
.
end

else
if thisdata = ’So long’ then /* Partner sent So long. */
.
.
.

CANCEL Statement: The CANCEL statement enables you to cancel the delay
currently in effect. This delay may have been set by a DELAY or SUSPEND
statement or it may be the standard intermessage delay for the simulated terminal
that is coded in the network definition.

The syntax for this statement is the following:
CANCEL {DELAY}

{SUSPEND}

Use the SUSPEND option when you are canceling a SUSPEND statement;
otherwise, use the DELAY option.

When the delay or suspend is canceled, the terminal should resume execution of
the STL program shortly unless the terminal is waiting for a condition to be met or
the terminal is not in a state in which it can send messages.

NORESP Statement: The NORESP statement tells WSim not to send an SNA
response automatically for the current message. Instead, WSim sets the

296 WSim Script Guide and Reference

transmission header (TH) and the response/request header (RH) for the normal
response and then resumes STL execution, enabling your program to construct its
own SNA response immediately.

Notes:

v WSim automatically generates and transmits SNA responses unless you include
the NORESP statement as your asynchronous subset statement on an ONIN or
ONOUT statement. Use this statement only when you want to send an abnormal
response. Coding this statement ensures that a response is sent.

v Do not send your response by using the TRANSMIT statement. The TRANSMIT
statement sets the AID byte. Instead, use the SUSPEND statement. This causes
the data to be sent without setting the AID byte.

The following example shows how the NORESP statement is used.
norespx: msgtxt

/**/
/* Activate ONIN conditions. */
/**/

onin then something_received = on
onin substr(data,1,6) = ’xxxxxx’ then generate_response = on
onin substr(data,1,6) = ’xxxxxx’ then noresp

something_received = off /* Prepare to receive something. */
generate_response = off /* Prepare to receive something. */
wait until onin something_received /* Wait till something is received. */

/***/
/* Something has been received. See if response should be generated. */
/***/

if generate_response then /* Program needs to generate */
/* response. */

do
type ’082E0000’x /* This is an SNA-generated */

/* response to send the intervention*/
/* required sense data. */

setrh on(exc,sni) /* Indicate this is an exception */
/* response. */

suspend() /* Required to send the response */
/* without setting an AID. */

end
else /* Program does not need to */

/* generate response. */
.
.
.
endtxt

When coding ONIN or ONOUT statements, it is good programming practice to
follow these steps:
1. Set up the conditions.
2. Set the values to OFF.
3. Continue with the synchronous execution of the program.

Using network-level IF statements
You can also test messages transmitted and received with network IF statements in
your network definition. These statements enable you to test message conditions

Chapter 20. Transmitting and receiving messages from an STL program 297

for all terminals in a network rather than just the terminal currently executing an
STL program. See , SC31-8945 for information about how to code these statements
and how these statements interact with terminal IF statements.

Using the WAIT UNTIL and QUIESCE UNTIL statements
The WAIT UNTIL statement and the QUIESCE UNTIL statement (or these clauses
on the TRANSMIT statement) stop execution of a terminal's STL program. The
terminal then waits or quiesces until the specified conditions are met. When the
condition is met, the STL program continues synchronous execution after the
intermessage delay has expired.

The WAIT UNTIL and QUIESCE UNTIL statements do not use asynchronous
subset statements.

The WAIT UNTIL statement uses the following syntax:
┌ ┐

WAIT │ UNTIL {ONIN [asynchronous_condition]} |
│ {ONOUT [asynchronous_condition]} |
│ {POSTED(event_name)} |
│ {SIGNALED(event_name)} |
! ┘

The asynchronous_condition can be any condition that meets the requirements
described in “Setting up asynchronous conditions” on page 299. The POSTED and
SIGNALED functions enable you to test whether an event to be posted or signaled
has occurred. These functions are discussed in “Posting and signaling events” on
page 300. When the condition is satisfied or the event specified by event_name has
occurred, the terminal is ready to begin program execution when its intermessage
delay has expired.

The WAIT UNTIL statement may imply a TRANSMIT USING ENTER. If TYPE
statements have been processed since the last Transmit Interrupt, the WAIT UNTIL
statement sends the messages.

The following two sections of code do exactly the same thing:
transmit using clear
type ’Hello’
wait until onin substr(data,1,1) = ’X’

or

transmit using clear
type ’Hello’
transmit using enter and wait until onin substr(data,1,1) = ’X’

In both cases, the message is transmitted before the terminal begins waiting.

The QUIESCE UNTIL statement uses this syntax:
┌ ┐

QUIESCE │ UNTIL {ONIN [asynchronous_condition]} |
│ {ONOUT [asynchronous_condition]} |
│ {SIGNALED(event_name)} |
! ┘

The QUIESCE statement enables you to specify optionally the conditions that
release a terminal from a quiesced state, as shown in the following example.

298 WSim Script Guide and Reference

/* Quiesce until the terminal receives the string ’WAKE UP’. */

quiesce until onin index(screen,’WAKE UP’) > 0

Like the WAIT UNTIL statement, the QUIESCE UNTIL statement may imply a
TRANSMIT.

Setting up asynchronous conditions
Asynchronous conditions, like regular conditions, can be simple (a single relational
expression consisting of an expression or two expressions joined by an arithmetic
or string operator) or complex (two or more relational expressions joined by logical
operators). See “Using conditions and relational operators” on page 261 for
information about regular conditions.

The following examples show how you can code asynchronous conditions.
onin substr(data,1,3) = ’111111’x then ...

/* Compares the first */
/* 3 bytes of the incoming */
/* data with the hexadecimal */
/* string ’111111’x */

wait until onin substr(ru,100,5) = ’Hello’
/* Interrupts program */
/* execution until an SNA RU */
/* is received with the */
/* string ’Hello’ starting at */
/* position 100. */

The following sections discuss the restrictions on expressions and the SUBSTR
function when used in asynchronous conditions.

Restrictions on expressions in asynchronous conditions
Unlike regular conditions, expressions used in asynchronous conditions are limited
to those that do not require computation of intermediate results. The following
expressions require computation of intermediate results: integer arithmetic
expressions involving at least one variable and SUBSTR functions that specify a
variable starting position value. The expressions that cannot be used are listed in
Chapter 28, “Expressions not allowed in asynchronous conditions,” on page 503.

The following examples show coding that cannot be used because it requires
computation of an intermediate result or uses a variable starting position on a
SUBSTR function.
onin a = b * c then . . . /* Cannot be used because it requires */

/* computation of an intermediate result, */
/* the product of two integer variables. */

wait until onin substr(data,a,5) = ’hello’ /* Cannot be used because a */
/* variable starting position */
/* on a SUBSTR function */
/* requires a temporary */
/* counter. */

Restrictions on the SUBSTR function in asynchronous
conditions
There are a number of restrictions on the SUBSTR function when it is used as a
part of an asynchronous condition. The use of the SUBSTR function is described in
“The SUBSTR function” on page 250.

Chapter 20. Transmitting and receiving messages from an STL program 299

The SUBSTR function enables you to use a part of a source string expression. The
syntax of the SUBSTR function is the following:
SUBSTR(source,starting_position[,length])

When you are using this function in an asynchronous condition, the following
restrictions apply:
1. The source expression must be a string variable or STL reserved variable; it

cannot be any other type of string expression such as a string constant, string
concatenation, or function that returns a string.

2. Only integer constants and integer constant expressions can be used as
starting_position arguments.

3. Only integer constants, integer constant expressions, or single integer variables
can be used as length arguments. You cannot use expressions that include
variables.

Examples of these restrictions appear in “SUBSTR” on page 488.

Posting and signaling events
WSim uses events to coordinate the activities of simulated terminals. Events enable
you to:
v Control the activity of a single terminal
v Synchronize the activities of two or more terminals
v Allow the operator to coordinate terminal activity.

When you coordinate terminal activity, you can simulate a terminal operator who
must wait for a particular event or an action by another terminal operator before
continuing.

You define an event by assigning it a name and informing the terminals when the
event is posted or signaled. This is done as follows:
v Posting an event means that WSim is posting a notice that the event has

occurred, like posting a notice on a bulletin board. The posting is available to
any terminal that inquires about the event and is in effect until it is explicitly
reset, much like a notice, which can be consulted until it is removed.

v Signaling an event means that WSim is signaling that an event has happened.
Unlike a post, a signal cannot be consulted later to determine if an event had
occurred. The event must be signaled again. You can also qsignal an event. A
qsignal is a qualified signal that affects only the terminal that issued the qsignal.

The following sections describe these two methods of managing events. Note that
the two methods are completely independent of each other. Posting an event has
no effect on terminals waiting for a signal, and a signal has no effect on terminals
waiting until an event is posted, even if the same event name is used for both
events.

Posting events
You post events when you want simulated terminals to be able to check the status
of the event at different times. When the event has occurred, terminals will use
that information as they continue executing their STL program.

To use this method of managing events, you must take these steps:
v Post the event.
v Request information about the status of the event.

300 WSim Script Guide and Reference

Posting the event
Use the POST statement to post an event. This statement uses the following syntax:
POST event_name [AFTER time [TAG event_name]]

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotation marks. (Strings containing hexadecimal
constants are exempt from this restriction.) If you specify a nonconstant string
expression, the first 8 characters of the string are used. If the string is shorter than
8 characters, the available characters are used. To satisfy conditions using event
names, the first 8 characters must match exactly. If you specify a string variable, it
cannot be the name of one of the reserved variables (for example, BUFFER).

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

The AFTER clause enables you to post an event after a specified period of time has
elapsed. The value for time is an integer value in seconds.

The TAG clause enables you to tag events that you may want to cancel before the
specified time elapses. You can use the TAG clause to assign the same event_tag to
multiple events. You can assign the same tag to events that are posted, qsignaled,
reset, or signaled, enabling you to cancel multiple events at one time. If an event
tag is not specified, a default tag is assigned that has a value that is the same as
the event name. See “Canceling events” on page 305 for information about
canceling events. You must code an AFTER clause if you want to code a TAG
clause on the POST statement. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

If an invalid string expression is used for the event name or tag, a value of eight
blanks (X'4040404040404040') is used. This value will be assigned if the event name
or tag is the null string or a expression containing a substring function with an
invalid starting_position.

If you wanted to post an event, you could use this code:
if a = 1 then

post ’MYEVENT’
else

nop

In a more complex example, you could post the same event after 5 seconds and
give it a tag using the code in the following example.
if a = 1 then

post ’MYEVENT’ after 5 tag ’EVENT1’
else

nop

Note: You cannot code an AFTER value of 0.

When you post an event, the post remains in effect until explicitly reset. To reset a
post, use the RESET statement. The RESET statement uses the following syntax:
RESET event_name [AFTER time [TAG event_name]]

Chapter 20. Transmitting and receiving messages from an STL program 301

The AFTER and TAG clauses are used in the same way as for the POST statement.
If you tag an event, you can cancel the activity for the event (in this case, resetting
the event) before the specified time has elapsed. In the following example, the
event 'MYEVENT' is reset.
reset ’MYEVENT’

The operator can also post events using the A (Alter) command and reset them
using the R (Reset) command. See , SC31-8948 for information about operator
commands.

Determining if an event is posted
To direct your simulated terminal to take action when an event is posted, use the
POSTED function. You can use this function on a WAIT statement or as a condition
in structured flow-of-control statements.

For example, the following statement forces your terminal to wait until the named
event takes place.
wait until posted(’RIGHT’) /* The terminal continues execution */

/* when event RIGHT occurs. */

When the event is posted, the condition is satisfied and the terminal continues
executing the STL program after the intermessage delay has expired.

You can also use the POSTED function in structured flow-of-control statements. For
example, the statements following the THEN in the following example will be
executed if the event 'HELLO' has been posted before the program execution
reaches this point.
if posted(’HELLO’) then

say ’HELLO has been posted’
else

say ’HELLO has not been posted’

You can also wait to take action until a combination of events occurs: an event is
posted and a message is received or sent. Use the following syntax:
WAIT UNTIL {ONIN} POSTED(event_name)

{ONOUT}

If you are waiting for a message to be received (ONIN), the terminal continues
synchronous execution when a message is received after the named event has been
posted. If you are waiting for a message to be sent (ONOUT), the terminal
continues synchronous execution after you send a message and the event is posted.
Obviously it is not typically possible to send a message when the terminal is
waiting. This capability is primarily useful when waiting to send messages that
your terminal sends automatically, such as SNA responses.

You can also use this construction on the QUIESCE statement. For example:
quiesce until onin posted(’MYEVENT’) /* Quiesce this terminal */

/* until a message is */
/* received while MYEVENT */
/* is posted. */

The following example shows how you could coordinate the activities of two
terminals by using a post.
string shared message /* "message" is shared by all terminals. */

master: msgtxt
/***/

302 WSim Script Guide and Reference

/* MASTER */
/* */
/* This procedure is for the "master" terminal. It is */
/* responsible for building a message to be transmitted, */
/* posting event READY once the message has been built, and */
/* transmitting the message. */
/***/
message_number = message_number + 1 /* Building a new message. */
message = ’This is message number’ char(message_number)
post "READY"
type message
transmit /* Send "message." */
endtxt

mimic: msgtxt
/**/
/* MIMIC */
/* */
/* This procedure is for the terminal which mimics the */
/* "master" terminal. It must wait until event READY is */
/* posted, then send the message previously built */
/* and saved in the shared variable "message". */
/**/
wait until posted("READY") /* Wait for event READY to be posted. */
reset "READY" /* Reset event READY for next use. */
type message /* "message" is a shared variable. */
transmit /* Send "message". */
endtxt

Using signals
Once an event is signaled, any actions the terminal takes as a result of the signal
must be taken immediately. You can signal an event using the SIGNAL statement
or the QSIGNAL statement in your STL program. The SIGNAL statement affects all
terminals in your network. The QSIGNAL statement affects only the terminal that
issues the QSIGNAL. The operator can also signal an event using the A (Alter)
operator command. See , SC31-8948 for information about operator commands.

Signaling an event
To signal an event, use the SIGNAL or QSIGNAL statement. The syntax for these
statements is the following:
SIGNAL event_name [AFTER time [TAG event_name]]

QSIGNAL event_name [AFTER time [TAG event_name]]

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotation marks. (Strings containing hexadecimal
constants are exempt from this restriction.) If you specify a nonconstant string
expression, the first 8 characters of the string are used. If the string is shorter than
8 characters, the available characters are used. To satisfy conditions using event
names, the first 8 characters must match exactly. If you specify a string variable, it
cannot be the name of one of the reserved variables (for example, BUFFER).

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

The AFTER clause enables you to specify a time interval that must elapse before
the event is signaled. The TAG clause identifies a name for the event that can be
used to cancel the event if the time interval has not expired. If an event tag is not
specified, a default tag is assigned that has a value that is the same as the event
name.

Chapter 20. Transmitting and receiving messages from an STL program 303

Once an event is signaled, your terminals have two ways to act on the signal:
v Wait or quiesce until an event is signaled and then continue synchronous

program execution
v Take action on the signal asynchronously, that is, whenever the event is signaled,

regardless of whether the terminal is currently executing the program.

These methods are described in the following sections.

Waiting or quiescing until an event is signaled
Just as with a post, you can wait for a signal and continue synchronous program
execution when the event is signaled. Use the following statement to direct the
terminal to wait until an event is signaled:
WAIT UNTIL SIGNALED(event_name)

Synchronous program execution continues when the condition is satisfied. You can
use the QUIESCE UNTIL statement in the same way. The condition for the UNTIL
SIGNALED statement is met with either a SIGNAL or a QSIGNAL. The following
example shows how to use this statement:
wait until signaled(’MYEVENT’) /* The terminal will wait until */

/* the event MYEVENT is signaled. */

Taking action on a signal asynchronously
The ON SIGNALED statement activates an asynchronous condition. The condition
is satisfied when the event is signaled. When the event is signaled and the
condition satisfied, the asynchronous subset statement associated with the
statement is executed immediately.

ON SIGNALED is an asynchronous statement, like ONIN and ONOUT, that is
active while a program is executing. Thus, an action can be taken during the
terminal's intermessage delay.

The syntax of the ON SIGNALED statement is the following:
ON SIGNALED(event_name) THEN[;] asynchronous_subset_statement

The event_name is an event name defined by a QSIGNAL or SIGNAL statement.
The asynchronous_subset_statement can be one of the following statements:
EXECUTE, CALL, ABORT, or any statement allowed within an EXECUTE
procedure, except RETURN. See “Using asynchronous subset statements” on page
294 for information about these asynchronous subset statements.

Once an ON SIGNALED condition has been satisfied, it is no longer active. If you
want to reactivate the condition, you must include another ON SIGNALED
statement in your program.

Only those ON SIGNALED conditions that are active at the time an event is
signaled are affected by that signal. Earlier signals of the same event have no effect
on an ON SIGNALED condition that is subsequently activated specifying that
event. Statements are activated as program execution reaches them.

You can deactivate any number of ON SIGNALED statements in your program. To
deactivate all ON SIGNALED conditions referring to particular events, enter:
DEACT event_names

where event_names is a list of event names, separated by commas. If you want to
deactivate all ON SIGNALED conditions in a program, enter this statement:

304 WSim Script Guide and Reference

DEACT ALL EVENT ONS

The following example shows how the ON SIGNALED statement is used.
runit: msgtxt
myevent = "HELLO"
on signaled(myevent) then say ’Event "HELLO" has been signaled.’
.
.
.
endtxt

The condition is tested immediately when the event is signaled.

The following example illustrates a more complex use of this condition. In this
example, suppose that you want a simulated terminal to write a report to the
operator each time an event is signaled. The operator signals the event periodically
using the following command:
a network,SIGNAL=MYEVENT

The following portions of an STL program will report the information to the
operator.
proc1: msgtxt
/***/
/* This procedure keeps a count of the number of times */
/* various events occur. */
/***/

on signaled(’MYEVENT’) then execute report
.
.
.
endtxt

report: msgtxt
/***/
/* This procedure will be executed when MYEVENT is signaled. */
/* It reestablishes the ON SIGNALED condition and */
/* then reports various types of information */
/* to the operator. */
/***/

on signaled(’MYEVENT’) then execute report

number_of_signals = number_of_signals + 1

say ’Total number of signals =’ char(number_of_signals)
say ’Total messages received =’ char(messages_received)
say ’Total messages sent =’ char(messages_sent)
.
.
.
endtxt

Canceling events
You can cancel events by using the CANCEL statement and the tag assigned to the
events to be canceled. The syntax of this statement is the following:
CANCEL event_tag

The event_tag is named following the same rules for event names discussed in
“Posting the event” on page 301. When WSim encounters a CANCEL statement, it
cancels all events with the specified tag named on POST, QSIGNAL, RESET, and

Chapter 20. Transmitting and receiving messages from an STL program 305

SIGNAL statements for which the specified time has not elapsed. Thus, if the
named events have not yet been posted, qsignaled, reset, or signaled, the action is
canceled.

If the event was posted, qsignaled, reset, or signaled without an event tag, the
event can still be canceled if the time specified on the AFTER clause has not
expired. If you did not specify an event tag, a default event tag is assigned. The
default event tag is the same as the event name assigned to the event.

When used to cancel events, the CANCEL statement is not an asynchronous subset
statement.

For examples of how to use the CANCEL statement to cancel events, see
“CANCEL” on page 366.

Specifying variable event names with a time delay
If time is specified, the event_name will not be assigned if it is a variable until the
time expires. For example, assume the following code:
my_event = ’KEY1’
post my_event after 10
my_event = ’KEY2’
post my_event after 10

In this case the event KEY2 will be posted twice because the name of the event is
not resolved until after the time expires.

306 WSim Script Guide and Reference

Chapter 21. Monitoring and automating your test

STL uses the WSim facilities to enable you to perform the following tasks:
v Monitor the test by:

– Writing messages to the operator
– Displaying messages at a display monitor using the Display Monitor Facility
– Using the printed listing to trace program execution and check the values of

variables.
v Log test data to the log data set
v Write verify records to the log data set to produce Verification Reports
v Automate the test so that it can run without an operator
v Identify network resources being used.

These capabilities enable you to monitor the test as it is running, to obtain data to
review performance after the test is complete, and to automate the test.

Monitoring the test
The simplest way to monitor your test is to write statements to the operator's
terminal at certain points in your program. In STL, you can write these messages
using the SAY statement. For example, the following statement sends the message
“The test is running” to the operator's terminal.
SAY "The test is running"

The message can be a string variable or constant expression. You must enclose a
string constant in a pair of single or double quotation marks.

If you are using the Display Monitor Facility, you can send the simulated 3270
display image as it exists at a particular point in your program to the display
monitor. You can send these images by including a MONITOR statement in your
STL program at the appropriate point. For example, you could display a screen
you received using these commands:
transmit and wait until onin /* Send data and wait for new screen. */
monitor /* Display the screen you received at */

/* the Display Monitor Facility. */

You can use the Display Monitor Facility in other ways as well. For more
information about the Display Monitor Facility, see , SC31-8948.

You can also use operator commands to monitor your simulation by tracing the
execution of your program. The operator commands enable you to display the
statement number currently being executed.

You may also wish to check or modify the value of one of your variables using
operator commands while the test is running. For example, you may want to find
out how many times a loop has been executed. You can use the printed listing to
determine how STL variables map to save areas, counters, and switches by
consulting the variable dictionary at the end of the listing. See “Printed listing” on
page 314 for more information about the printed listing produced by the STL
Translator.

© Copyright IBM Corp. 1983, 2015 307

Logging test data
WSim automatically logs all message traffic to and from your simulated terminals
unless you code MLOG=NO for your network. You can also direct WSim to log
STL trace information when a simulation is running by using operator commands.
See , SC31-8948 for more information on these commands. After the information is
written to the log data set, you must format it using the Loglist Utility. See ,
SC31-8947 and “Obtaining STL trace records” on page 341 for information about
using this utility.

In your STL program, you can define other messages to be written to the log data
set. Typically these are informational in nature and report on the progress of the
STL program. You can also write the display image for the following terminals to
the log data set: 3270 or 5250. You can log information by using the LOG
statement. You can log a display image to the log data set as shown in the
following example.
log display /* Logs the current screen. */
log ’I have just logged the display image for ’devid()

WSim logs the display and then the message identifying the device. The function
DEVID provides the name of the simulated device currently executing the STL
program.

Writing verify records
In your STL program, you can also write Verify records to the log data set (used by
the Loglist Utility to produce Verification Reports) with the VERIFY statement.
Verification Reports provide, at a glance, information about a simple condition. You
can also use them to quickly determine if an error occurred and, if so, how many
times.

Note: Verification Reports reference resources: counters, save areas, and switches.
Therefore, you should refer to the variable dictionary to determine how STL
variables map to the resources.

The format of the VERIFY statement is as follows:
VERIFY simple_condition [FOR description]

The following examples show you how to use the VERIFY statement.
/* Serial numbers, which are found at offset 30 on the screen */
/* cannot contain a "9" as the first digit. If this occurs */
/* then log a verify record. The description, "Serial number */
/* in error" can be used when looking at the Verification Summary */
/* Report to determine how many errors of this nature occurred. */

verify substr(screen,30,1) = ’9’ for ’Serial number in error’

verify amount = 0 /* Log Verify record if "amount" equals zero. */

Automating your test
On occasion, you may want to run a test without having an operator present. To
create a self-controlled test, you can include operator commands in your STL
programs. With these commands, you can control the test without intervention
from the operator; changes can be made just as if the operator were there. By
coding operator commands in your STL program, a simulated terminal can start

308 WSim Script Guide and Reference

and stop other network resources, query other terminals, activate traces, alter
message rates and delays, post events, and even stop a network or cancel WSim.

You can also use operator commands to automate regression testing with an
existing set of networks. You could write a master network to initialize, start, and
stop the networks used in the regression test.

To incorporate operator commands, use the OPCMND statement followed by the
appropriate operator command. See , SC31-8948 for details of operator command
usage and syntax.

Note: To incorporate operator commands you must code the
OPTIONS=(MONCMND) network definition operand.

For example, the following statement automatically alters the user time interval
(UTI) to 100 when the STL program is running. It does not require intervention
from the operator.
OPCMND ’A ’NETID()’,U=100’ /* Alter UTI to 100. */

Notice that NETID() is an STL function that inserts the network name in the
operator command.

Although the command can be any length, a maximum of 120 characters is
actually used.

You can use all operator commands except console recovery commands with the
OPCMND statement. Console recovery commands must be entered by an operator.

Identifying network resources
In your messages to the operator and the log data set, you may want to identify
the terminals currently running the STL program or the network being used. STL
provides a set of functions that return this type of information. The following list
indicates the functions available and the information each returns.

Function Returns

APPCLUID() Name of the APPC LU associated with a simulated transaction program

DEVID() Name of the simulated device executing the STL procedure

ID() All or part of the name of a terminal

LASTVERB() Name of the last CPI-C verb issued by this message deck in a CPI-C simulation

LUID() Name of the simulated LU executing the STL procedure

MSGTXTID() Name of the STL procedure currently being executed

NETID() Name of the simulated terminal's network

SESSNO() Session number of the simulated LU executing the STL procedure

TCPIPID() Name of the TCP/IP connection associated with a simulated device

TPID() Transaction program name for this message deck

TPINSTNO() Transaction program instance number for this message deck

VTAMAPID() Name of the VTAMAPPL associated with a simulated LU.

These functions return the names identified on the network definition for these
terminals and devices. Each function returns the name of the terminal or device
currently executing the STL program.

These functions are described in detail in Chapter 26, “Reference to STL functions,”
on page 449.

Chapter 21. Monitoring and automating your test 309

310 WSim Script Guide and Reference

Chapter 22. Using the STL Translator

The STL Translator translates your STL programs into the message generation
statements required to run a simulation. If your programs do not have any syntax
errors, it also places the translated message generation decks into the data set you
specify.

If you include a network definition in your STL input, the STL Translator invokes
the Preprocessor to verify the network definition statements. If there are no errors,
the Preprocessor stores the network definition in the data set you specify.

To run a simulation, you must store the network definition and message
generation decks that make up the script for the network in the appropriate data
sets. This chapter discusses storage options, explains how to run the STL
Translator, and provides example output. Chapter 23, “Combining STL programs
and network definitions,” on page 325 discusses factors to consider when
combining network definitions and STL programs to create scripts.

This chapter discusses the following topics:
v Methods for storing scripts
v Input to the STL Translator
v Output created by the STL Translator
v How to run the STL Translator

– Execution parameters
– Sample JCL and TSO CLISTs for running the translator
– Data set requirements
– Return codes for the translator.

Methods for storing scripts
During a simulation, the network definition and message generation decks must be
in specific data sets.

Figure 4 on page 312 shows the three methods of storing scripts.

© Copyright IBM Corp. 1983, 2015 311

Method 1 lets you create message generation decks from your STL programs and
store them in the MSGDD data set. It also lets you include your network definition
in the same data set as your STL programs. This way, when you run the STL
Translator, it invokes the Preprocessor to store the network definition in the
INITDD data set. This is the recommended method of storing scripts.

Method 2 lets you store the network definition in a separate data set and run the
Preprocessor on it as a separate step from translating the STL programs. The
Preprocessor stores your network definition in the INITDD data set.

METHOD 1
┌──────────────┐
│ WSim Network │
│ Definitions │ ┌─────────────┐
│ and ├──┐ Translate STL │ INITDD │
│ STL │ │ Programs and │ & │
│ Programs │ ├────────────────────────→│ MSGDD │
!──────────────┘ │ Preprocess WSim │ Partitioned │
┌──────────────┐ │ Networks using │ Data Sets │
│ Include │ │ the STL Translator !─────────────┘
│ Data ├──┘
│ Set │
!──────────────┘

METHOD 2
┌──────────────┐ Preprocess WSim ┌─────────────┐
│ WSim │ Networks using │ WSim │
│ Network ├───────────────────────────→│ INITDD │
│ Definitions │ the WSim │ Partitioned │
!──────────────┘ Preprocessor │ Data Set │

!─────────────┘
┌──────────────┐
│ Include │
│ Data ├──┐
│ Set │ │ Translate ┌─────────────┐
!──────────────┘ │ STL using │ WSim │

├────────────────────────→│ MSGDD │
┌──────────────┐ │ the STL │ Partitioned │
│ STL │ │ Translator │ Data Set │
│ Programs ├──┘ !─────────────┘
│ │
!──────────────┘

METHOD 3
┌────────────┐
│ Sequential │
│ Data Set │
│ Containing │
│ WSim ├─┐
│ Network │ │ Combine
│ Definition │ │ the ┌─────────────┐
!────────────┘ │ Data Sets │ INITDD │

│ and │ & │
┌──────────────┐ ├─────────────→│ MSGDD │
│ Include │ ┌────────────┐ │ Preprocess │ Partitioned │
│ Data ├──┐ │ Sequential │ │ Using │ Data Sets │
│ Set │ │ │ Data Set │ │ the WSim !─────────────┘
!──────────────┘ │ Translate │ Containing │ │ Preprocessor

│ Using the │ WSim ├─┘
┌──────────────┐ │──────────────────→│ Message │
│ STL │ │ STL │ Generation │
│ Programs ├──┘ Translator │ Decks │
│ │ │ (SEQOUT) │
!──────────────┘ !────────────┘

Figure 4. Using the STL Translator and the Preprocessor to store scripts

312 WSim Script Guide and Reference

Method 3 lets you store the message generation decks output by the STL Translator
in a sequential data set. Only the message generation decks are written to this data
set. These decks can then be combined with the network definition and run
through the Preprocessor as a separate step. The Preprocessor integrates the
network definition and message generation deck portions of the script and stores
the output in the MSGDD and INITDD data sets. If you include the network
definition as part of your STL Translator input, you may want to specify the
NOPREP execution parameter when using this method.

You must specify the NOSEQOUT execution parameter when running the STL
Translator if you do not want the sequential output data set. The STL Translator
creates this data set by default.

Specify the NOPDSOUT execution parameter if you do not want the STL
procedures and user tables to be stored in the MSGDD data set. Note that the trace
correlation data set, which is required by the STL trace facility and the Q (Query)
operator command to display STL statement numbers, will not be available. If you
code a network definition in your STL input and specify the NOPDSOUT
execution parameter, members could be stored in the MSGDD data set during
Preprocessor execution.

You may want to run the Translator for preliminary debugging of your STL
programs without requesting either a sequential data set or a MSGDD partitioned
data set. You can then examine the STL Translator printed listing to debug syntax
errors.

If you choose the recommended method for storing your script (Method 1), syntax
errors for the network definition appear in the Preprocessor output, which is
appended to the STL Translator listings. If the Preprocessor runs with no errors, it
stores your network definition in the INITDD data set. If you do not change the
network definition after it is preprocessed, you can then run the STL Translator
with the NOPREP execution parameter. This eliminates unnecessary invocations of
the Preprocessor.

After you have completed preliminary debugging, you will usually send translated
STL procedures directly to an existing MSGDD. The STL Translator will not add
STL program output to the MSGDD data set until the program translates without
errors. Each procedure in the program is translated as a separate partitioned data
set member. See “Structuring STL programs” on page 326 for a definition of an
STL program and procedure.

Although storing a complete program at one time is simpler, it is not a
requirement. If you do choose to write a program in several parts and translate
them into your MSGDD data set separately, you must follow the procedures
outlined in “Combining STL procedures from different STL programs” on page
333.

You can define an INITDD data set for network definitions and a separate MSGDD
data set for message generation decks. If you like, you can define INITDD and
MSGDD as the same data set and store your entire script together. See , SC31-8948
for more information about how to run WSim.

Chapter 22. Using the STL Translator 313

Input to the STL Translator
The source data set containing your network definition and STL programs is the
primary input to the STL Translator. This source data set must be a sequential data
set or a member of a partitioned data set of fixed, fixed-block, variable, or
variable-blocked record format with a maximum logical record length of 255 bytes.
This data set is defined to the operating system on the SYSIN DD statement when
running the translator.

Sequence numbers placed in the data set by some editors will cause translation
errors if they are not removed.

Also, a data set containing members to be included by the STL Translator may be
appended. This data set must be a partitioned data set. You define this data set to
the operating system with the SYSLIB DD statement when you run the Translator.

Output created by the STL Translator
The STL Translator produces the following types of output:
v Printed listing
v MSGDD partitioned data set members containing translated STL procedures,

user tables, message generation decks, and the STL trace correlation records (STL
to message generation deck statement number correlations required to use the
STL trace facility and the Q (Query) operator command to display STL statement
numbers - optional)

v INITDD partitioned data set members containing network definitions
v Sequential output data set (must be defined unless you specify the NOSEQOUT

execution parameter)
v Temporary work data sets.

You will obtain the MSGDD partitioned data set members and the sequential
output data set unless you suppress them with your execution parameters. See
“Using STL Translator execution parameters” on page 319 for information about
execution parameters. You must specifically request the MSGDD partitioned data
set member containing the variable dictionary and statement correlations when
you run the STL Translator. You request the variable dictionary and statement
correlations by coding @PROGRAM statements in your STL input or by running
the translator with the PROGRAM execution parameter specified.

The STL Translator outputs are described in the following sections.

Printed listing
The printed listing created by the STL Translator contains the message generation
statements the translator produces and the STL input source lines. The input
source lines appear in the listing as message generation statement comments (an
asterisk is added to the beginning of each line). If you do not want message
generation statements in the listing, you can suppress them by specifying the
NOWSIM execution parameter when you run the translator.

The listing also contains Preprocessor output if you included a network definition
in your STL input and did not specify the NOPREP execution parameter. If you
specify NOLIST, only Preprocessor errors appear. If you specify SUMMARY, an
extra report summarizing the network definition options and defaults appears. You
also get a cross-reference report unless you specify NOXREF or NOLIST.

314 WSim Script Guide and Reference

Below is a summary of the listing formats:
1. STL Translator Listings (one for each program):
v Error messages
v Source statements, unless you specify NOSOURCE
v Scripting language statements, unless you specify NOWSIM
v Variable and Event Dictionary
v Statistics Report.

2. Preprocessor listings (one for each network):
v Error messages
v Preprocessor listing, unless you specify NOLIST
v Cross-reference report, unless you specify NOXREF or NOLIST
v Network Definition Summary Report, if you specify SUMMARY.

The data set to contain the printed listing is defined to the operating system on the
SYSPRINT DD statement when you run the STL Translator.

Figure 5 on page 316 shows an example listing resulting from the translation of an
STL input data set that includes a network definition. Both the STL listing and the
Preprocessor output are shown as they appear in the SYSPRINT data set.

In the STL listing, statement numbers are included at the left side of the listing.
The STL statement numbers and the message generation statement numbers are
printed in separate columns. The STL statement numbers are referenced on the STL
trace records (STRC) produced by the Loglist Utility since STL trace records are
requested in the network definition (by coding STLTRACE=YES). The message
generation statement numbers are referenced on the message trace records (MTRC)
produced by the Loglist Utility since message trace records are requested in the
network definition (by coding MSGTRACE=YES).

At the end of the STL listing, the STL Translator appends a dictionary of the
variables used in the source program, detailing their use, class, and associated
resource name. A dictionary of the events used, if any, is also appended.

Note: The variable dictionary, event dictionary, and statement numbers are for
your use when reading the STL listing and debugging your programs. For more
information, see “Reading the variable dictionary” on page 338 and “Reading the
event dictionary” on page 340.

The following list shows the contents of the STL listing by column:

Columns Contents

1 Carriage control character for printing

2-6 Message generation statement number (message generation statements only)

8-12 STL statement number (STL statements only)

14-133 Statement text

The network definition statements included in the STL Translator input do not
appear in the STL listing because the STL Translator does not process these
statements. Instead, they appear in the Preprocessor output because this is where
the Preprocessor flags errors.

A cross-reference report also appears in the Preprocessor output, indicating that
NOXREF was not specified when the STL Translator was run. A report

Chapter 22. Using the STL Translator 315

summarizing the network definition options and defaults also appears, indicating
that SUMMARY was specified.

STL LISTING TIME 12.48.45, MAY 13, 2002 PAGE 1

WSim
STL# STATEMENTS
----- ----- --

00001 * @network
00002 * @endnetwork

00000 *** MESSAGE ***
ITP3172I NETWORK DEFINITION IS IN PREPROCESSOR OUTPUT BELOW

00003 * @program=myprog
00004 * mytest: msgtxt

MYTEST MSGTXT STLMEM=MYPROG
00005 * do i = 1 to 10

00001 SET DC1=1
$LA1 LABEL

00002 IF WHEN=IMMED,
LOC=DC1,TEXT=10,COND=LE,
THEN=B-$LA2

00003 BRANCH LABEL=$LA3
$LA2 LABEL

00006 * transmit using pf8
00004 PF8
00005 STOP

00007 * if i = 5 then
00006 IF WHEN=IMMED,

LOC=DC1,TEXT=5,COND=EQ,
THEN=B-$LA5

00007 BRANCH LABEL=$LA6
$LA5 LABEL

00008 * signal ’MYEVENT’
00008 EVENT SIGNAL=MYEVENT

00009 * end
$LA6 LABEL

00009 $LA4 SET DC2=DC1
00010 SET DC1=+1
00011 IF WHEN=IMMED,

LOC=DC1,TEXT=DC2,COND=LT,THEN=B-$LA3
00012 BRANCH LABEL=$LA1

$LA3 LABEL
00010 * endtxt

00013 ENDTXT

STL LISTING MYPROG TIME 12.48.45, MAY 13, 2002 PAGE 2
VARIABLE DICTIONARY
NAME USE CLASS MAPPING DEFINED REFERENCED ON STATEMENT NUMBER
-------------------------------- -------- -------- ------------------- ------- --

I INTEGER UNSHARED DC1 5, 7
MYPROG PROGRAM MYPROG 3

MYTEST PROC MYTEST 4

(WORK VARIABLE) DC2

LARGEST DEVICE COUNTER USED = 2
LARGEST NTWRK COUNTER USED = 0
LARGEST DEVICE SAVEAREA USED = 0
LARGEST NTWRK SAVEAREA USED = 0
LARGEST DEVICE SWITCH USED = 0
LARGEST NTWRK SWITCH USED = 0

LARGEST IF NUMBER USED = 0

STL LISTING MYPROG TIME 12.48.45, MAY 13, 2002 PAGE 3
EVENT DICTIONARY
NAME USE REFERENCED ON STATEMENT NUMBER
-------------------------------- ------ ---

’MYEVENT’ SIGNAL 8

Figure 5. Sample printed listing from STL translator, part 1 of 2

316 WSim Script Guide and Reference

Notice that the translator uses labels beginning with $LA. Thus, you cannot use
$LA at the beginning of labels or names in an STL program. Refer to , SC31-8947
for more detail on reading the Preprocessor output part of the printed listing.

MSGDD partitioned data set members
The MSGDD partitioned data set contains message generation decks and user
tables that are executed by WSim during a simulation. This data set is defined to
the operating system on the MSGDD DD statement when you run the translator
and WSim.

WSim PREPROCESSOR OUTPUT TIME 12.48.45, MAY 13, 2002 PAGE 4

LINE STMT ---------1---------2---------3---------4---------5---------6---------7-

1 mynet ntwrk uti=100,bufsize=10000,delay=f(1),logdsply=both,
2 conrate=yes,mlog=yes,msgtrace=yes,
3 options=(debug,moncmnd),stltrace=yes
4 slu path mytest
5 myappl vtamappl
6 appl01 lu lutype=lu0,path=(slu),init=sec,
7 dlogmod=s3270,thktime=immed
8 * 00001 * @network
9 * 00002 * @endnetwork

10 * 00003 * @program=myprog
11 * 00004 * mytest: msgtxt
12 MYTEST MSGTXT STLMEM=MYPROG
13 * 00005 * do i = 1 to 10
14 1 SET DC1=1
15 $LA1 LABEL
16 2 IF WHEN=IMMED,
17 LOC=DC1,TEXT=10,COND=LE,
18 THEN=B-$LA2
19 3 BRANCH LABEL=$LA3
20 $LA2 LABEL
21 * 00006 * transmit using pf8
22 4 PF8
23 5 STOP
24 * 00007 * if i = 5 then
25 6 IF WHEN=IMMED,
26 LOC=DC1,TEXT=5,COND=EQ,
27 THEN=B-$LA5
28 7 BRANCH LABEL=$LA6
29 $LA5 LABEL
30 * 00008 * signal ’MYEVENT’
31 8 EVENT SIGNAL=MYEVENT
32 * 00009 * end
33 $LA6 LABEL
34 9 $LA4 SET DC2=DC1
35 10 SET DC1=+1
36 11 IF WHEN=IMMED,
37 LOC=DC1,TEXT=DC2,COND=LT,THEN=B-$LA3
38 12 BRANCH LABEL=$LA1
39 $LA3 LABEL
40 * 00010 * endtxt
41 13 ENDTXT

CROSS-REFERENCE REPORT TIME 12.48.45, MAY 13, 2002 PAGE 5

NAME (DECK) TYPE DEFINED REFERENCED ON LINE NUMBER
------------------- ----------- ------- ---

$LA1 (MYTEST) LABEL 15 38

$LA2 (MYTEST) LABEL 20 18

$LA3 (MYTEST) LABEL 39 19, 37

$LA4 (MYTEST) LABEL 34

$LA5 (MYTEST) LABEL 29 27

$LA6 (MYTEST) LABEL 33 28

DC1 COUNTER 14, 17, 26, 34, 35, 37

DC2 COUNTER 34, 37

MYEVENT ON EVENT 31

MYTEST DECK NAME 12 4

NTWRKUTI UTI NAME 1

ITP3181I 22,704 BYTES ARE REQUIRED FOR THIS NETWORK

ITP3182I 1 BLOCKS OF TEXT DATA REQUIRED FOR THIS NETWORK

ITP3179I MEMBER ADDED TO DATA SET
ITP3179I NAME = INITDD(MYNET)

Figure 6. Sample printed listing from STL Translator, part 2 of 2

Chapter 22. Using the STL Translator 317

When you run the STL Translator, it automatically adds your translated STL
procedures and user tables to the MSGDD data set unless you code the
NOPDSOUT execution parameter or errors are found during the translation.

Each STL procedure processed by the STL Translator is added to the MSGDD data
set as a separate member. Members are also added for each MSGUTBL group
included in the STL source data set. Member names are the same as the names
coded on the MSGTXT or MSGUTBL statements and must be unique.

Like the printed listing, the MSGDD members created include STL source lines as
comments and the message generation statements generated by the STL Translator.
You can eliminate the STL source lines by using the NOSOURCE execution
parameter.

Note: MSGDD members created by the STL Translator are executable message
generation decks. You do not need to preprocess these decks before using them in
a simulation.

If you specify the PROGRAM execution parameter when running the translator or
code @PROGRAM statements in your STL input, the STL Translator creates
MSGDD data set members containing the records that correlate the STL statements
in your programs with the message generation statements they generate. (The
PROGRAM execution parameter specifies that trace information is to be stored for
the first program defined in your input data. Code the @PROGRAM statement for
any additional programs for which you want trace information.) These correlation
records must be available if you want to use the STL trace facility or if you want to
see the STL statement numbers with the Q (Query) operator command. Also, you
must code STLTRACE=YES in your network definition. See “Obtaining STL trace
records” on page 341 for more information about the STL trace facility.

These MSGDD data set members enable the Loglist Utility to produce STL trace
records that refer to STL variable names and statement numbers. This information
is essential when debugging STL programs.

INITDD partitioned data set members
The INITDD partitioned data set contains network definitions used by WSim
during a simulation. You define this data set to the operating system on the
INITDD DD statement when you run the translator and WSim.

When you include a network definition in your input data to the STL Translator, it
invokes the Preprocessor, which verifies and stores each network in the INITDD
data set. If you specify the NOPREP execution parameter, the STL Translator does
not invoke the Preprocessor. Thus, no members are stored in the INITDD data set.

The Preprocessor only stores members in the INITDD data set when it successfully
preprocesses the entire network definition.

Sequential output data set
The STL Translator creates a sequential output data set that you define to the
operating system on the SEQOUT DD statement. It contains only the message
generation decks translated from your STL programs. You could merge this data
set with a network and then use the Preprocessor to place the members in the
MSGDD and INITDD. This may be useful if you want to transfer the translated
STL programs to another system.

318 WSim Script Guide and Reference

A SEQOUT DD for this data set is required unless you code the NOSEQOUT
execution parameter when invoking the translator. Like the printed listing and
MSGDD, this data set contains the STL source lines with statement numbers as
comments and the message generation statements generated by the STL Translator.
You can eliminate the STL source lines by using the NOSOURCE execution
parameter.

Once you debug your STL programs, the message generation statements included
in this data set are ready to be combined with a network definition and processed
by the Preprocessor. This data set should not be changed because the STL trace
facility depends upon the order of the statements.

Note: Message generation decks in the sequential (SEQOUT) data set cannot be
executed by WSim without first being preprocessed.

Temporary work data sets
The STL Translator uses three temporary partitioned data sets that you define to
the operating system on the SYSUT1, SYSUT2, and SYSUT3 DD statements.

The translator uses SYSUT1 set as a workspace for storing STL procedures and
user tables. Make sure that the data set you define is large enough to contain all
procedures and user tables translated.

SYSUT2 and SYSUT3 are only needed if you include network definition statements
in your STL input data set. The Preprocessor uses these data sets as workspace for
storing network definition statements and message generation statements. You
need SYSUT2 only if you code NTWRK statements in your network definition.
SYSUT2 must be large enough to contain all the networks you define. You need
SYSUT3 only if you code MSGTXT or MSGUTBL statements in your network
definition. SYSUT3 must be large enough to contain all the message generation
decks and user tables you define in your network definition.

Running the STL Translator
You can run the STL Translator using JCL on MVS or a CLIST or EXEC under TSO
or the WSim/ISPF Interface. The name of the STL Translator program is ITPSTL.

Using STL Translator execution parameters
You can code the following execution parameters to run the STL Translator:

Note: When execution parameters are included in the PARMDD data set, they are
overridden by those passed when ITPSTL is called.

NOSOURCE
When you specify NOSOURCE, STL source statements are not included in
your MSGDD or SEQOUT data sets. If this parameter is not specified, STL
source statements are printed and written to the output data sets as
comments in the message generation statements.

NOWSIM
When you specify NOWSIM, the translated message generation statements
are not included in the printed listing. Only the STL source statements are
included in your printed listing. This can be useful when you are
debugging the syntax of your STL programs.

Chapter 22. Using the STL Translator 319

NOSEQOUT
When you specify NOSEQOUT, the STL Translator does not create the
sequential data set. Otherwise, the STL Translator creates a sequential
output data set to contain all message generation decks and user tables
translated from your STL programs. This does not include any message
generation statements coded in the network definition.

NOPDSOUT
When you specify NOPDSOUT, the STL Translator does not place any
message generation decks or user tables translated from your STL
programs into the MSGDD partitioned data set.

Notes:

v If you specify NOPDSOUT, variable dictionaries, which are required by
the STL trace facility and the Q (Query) command to display STL
statement numbers, are not available. To create variable dictionaries, you
must either specify the PROGRAM= parameter when you run the
translator or code the @PROGRAM statement in your STL input data
set, and not specify NOPDSOUT.

v If you do not specify NOPREP and you code a network definition, the
Preprocessor may store members in the MSGDD partitioned data set
while running.

v If you do not specify NOPREP and you code a network definition, the
Preprocessor will fail if it expects a translated message deck or user table
to be in the MSGDD partitioned data set that does not exist.

NOIMPLICIT
When you specify NOIMPLICIT as an execution parameter for STL,
implicit definitions of BIT, INTEGER, or STRING variables are considered
errors and are flagged with a new error message (ITP3206I). Refer to ,
SC31-8951 for a detailed description of this error message. Implicit
definitions are most commonly found in an assignment statement where a
previously unused and undefined variable is assigned a value of a
particular type. They can also be encountered when previously unused
variables are used as output variables on CPI-C STL statements or on the
UTBLSCAN function.

If NOIMPLICIT is not specified, implicitly defined variables are assigned a
type based on the context of the first usage of the variable.

Variables are explicitly defined by using ALLOCATE statements or BIT,
INTEGER, or STRING statements.

The NOIMPLICIT option is particularly useful in avoiding inadvertent
resource conflicts when STL programs are developed separately using a
common set of variables distributed in a common member which is
included by all such programs.

PROGRAM=name
Specifying the PROGRAM=name execution parameter associates the given
program name with the translated STL source statements for the first
program defined in the input data set. This program name appears in the
title of the printed listing created by the STL Translator. In addition, this
program name is assigned to the member of the MSGDD partitioned data
set that contains the variable dictionary and statement correlation records.
The name is not assigned if you have not requested MSGDD partitioned
data set members (that is, you specified the NOPDSOUT execution
parameter).

320 WSim Script Guide and Reference

You can also specify program names using the STL @PROGRAM
statement. If you specify a name on an STL @PROGRAM statement for the
first program defined in the input data set and code a different name on
the PROGRAM execution parameter, the PROGRAM execution parameter
overrides the @PROGRAM statement.

Note that the name you use must be different from all procedure and
MSGUTBL names contained in the MSGDD data set.

PRTLNCNT=nnn
Use the PRTLNCNT parameter to specify the maximum number of lines to
be printed on an output page before ejecting to a new page. The value for
nnn is an integer from 35 to 255. The default value is 60.

NOLIST
You can use the NOLIST execution parameter when you include a network
definition in your STL input. When you specify NOLIST, no Preprocessor
output is listed in the SYSPRINT data set. However, if errors are detected
while preprocessing, these errors are still shown.

SUMMARY
You can use the SUMMARY execution parameter when you include a
network definition in your STL input. When you specify SUMMARY, a
report summarizing the network definition options and defaults is listed in
the SYSPRINT data set.

XREF You can use the XREF execution parameter when you include a network
definition in your STL input. When you specify XREF, a cross-reference
report is listed in the SYSPRINT data set for each network you define,
unless you also specified the NOLIST execution parameter. XREF is the
default.

NOXREF
You can use the NOXREF execution parameter when you include a
network definition in your STL input. When you specify NOXREF, a
cross-reference report is not listed in the SYSPRINT data set for any
network you define.

NOPREP
You can use the NOPREP execution parameter when you include a
network definition in your STL input. When you specify NOPREP, your
network definition statements are not validated or added to the MSGDD
and INITDD data sets.

NOTRAN
You can use the NOTRAN execution parameter when you include a
network definition in your STL input data set. When you specify
NOTRAN, the STL Translator only verifies the @NETWORK and
@ENDNETWORK statements and ignores the rest of the STL input data
set. The STL Translator invokes the Preprocessor to verify the network
definition and add members to the MSGDD and INITDD data sets.

Using JCL to run the STL Translator
The example below shows JCL that you can use to run the STL Translator (member
STLJOB in the SAMPLE data set shipped with WSim).
//STLJOB JOB
//***
//* Workload Simulator (WSim) 5655-I39 *
//***
//* STLJOB JCL *

Chapter 22. Using the STL Translator 321

//* Sample JCL to execute the WSim STL Translator (ITPSTL). *
//***
//STL EXEC PGM=ITPSTL,REGION=4096K
//STEPLIB DD DSN=WSIM.SITPLOAD,DISP=SHR
//PARMDD DD DSN=WSIM.PARMDD,DISP=SHR
//RATEDD DD DSN=WSIM.SITPRTBL,DISP=SHR
//INITDD DD DSN=WSIM.TESTFILE,DISP=SHR
//SYSPRINT DD SYSOUT=A
//MSGDD DD DSN=WSIM.MSGFILE,DISP=SHR
//SEQOUT DD DSN=WSIM.STL.SEQOUT,DISP=SHR
//SYSLIB DD DSN=WSIM.STLIN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(10,10,3))
//* member_name = name of member with STL statements to translate
//SYSIN DD DSN=WSIM.STLIN(member_name),DISP=SHR

Using a TSO CLIST to run the STL Translator
The following example displays a TSO CLIST that you can use to run the STL
Translator (member STL in the CLIST data set shipped with WSim).
/***/
/* Workload Simulator (WSim) 5655-I39 */
/***/
/* STL CLIST */
/* Sample CLIST to execute the WSim STL Translator (ITPSTL). */
/* */
/* Format: STL member_name */
/***/
PROC 1 MEMBER_NAME
CONTROL NOMSG
FREE DDNAME(SYSPRINT SYSIN MSGDD INITDD RATEDD PARMDD -

SYSLIB SYSUT1 SYSUT2 SYSUT3)
CONTROL MSG
ALLOC DDNAME(SYSPRINT) DATASET(’WSIM.STLPRINT’) SHR
ALLOC DDNAME(SYSIN) DATASET(’WSIM.STLIN(&MEMBER_NAME)’) SHR
ALLOC DDNAME(MSGDD) DATASET(’WSIM.MSGFILE’) SHR
ALLOC DDNAME(INITDD) DATASET(’WSIM.TESTFILE’) SHR
ALLOC DDNAME(RATEDD) DATASET(’WSIM.SITPRTBL’) SHR
ALLOC DDNAME(PARMDD) DATASET(’WSIM.PARMDD’) SHR
ALLOC DDNAME(SYSLIB) DATASET(’WSIM.STLIN’) SHR
ALLOC DDNAME(SYSUT1) NEW SPACE(10,10) TRACKS DELETE -

DIR(3) UNIT(SYSDA)
ALLOC DDNAME(SYSUT2) NEW SPACE(10,10) TRACKS DELETE -

DIR(3) UNIT(SYSDA)
ALLOC DDNAME(SYSUT3) NEW SPACE(10,10) TRACKS DELETE -

DIR(3) UNIT(SYSDA)
CALL ’WSIM.SITPLOAD(ITPSTL)’ ’NOSEQOUT,NOWSIM’
WRITE STL RETURN CODE IS &LASTCC
FREE DDNAME(SYSPRINT SYSIN MSGDD INITDD RATEDD PARMDD -

SYSLIB SYSUT1 SYSUT2 SYSUT3)
END

Using the WSim/ISPF Interface
You can also run the STL Translator by way of the WSim/ISPF Interface. To do
this, follow these steps:
1. Invoke the WSim/ISPF Interface main panel from ISPF. The method you use to

do this depends on how the WSim/ISPF Interface application is installed at
your site. If you are not sure how to do this, see your system programmer for
assistance.

2. Select option 1 from the WSim/ISPF Interface main panel and press Enter. The
Process Networks and STL Programs panel is displayed.

322 WSim Script Guide and Reference

Note: You can also type “STL” on the WSim/ISPF Interface main panel
command line and press Enter to display this panel.

3. Fill in the appropriate fields on this panel and press Enter.

For more information about the WSim/ISPF Interface, refer to , SC31-8947.

Data set requirements
The following data sets are used to run the STL Translator:

SYSIN Defines the data set containing your STL programs. You may also include a
network definition in this data set.

SYSPRINT Defines the output printer.

SEQOUT Defines the sequential data set to contain the message generation decks
translated from your STL programs. This data set must be defined unless the
NOSEQOUT or NOTRAN option is coded.

MSGDD Defines the partitioned data set to contain the translated message generation
decks, user tables, and STL statement correlation records. If you include a
network definition in your STL input and you code message generation
decks within it, they also appear in the MSGDD data set. This data set must
be defined unless the NOPDSOUT option (and not NOTRAN) is coded and
you did not include message generation decks or user tables in your
network while omitting the NOPREP option. This data set can be the same
as the INITDD data set.

SYSUT1 Defines a temporary partitioned data set used as a work space for storing
the translated STL programs. It must be defined if you are using JCL or
running under TSO and you do not specify NOTRAN.

SYSUT2 Defines a temporary partitioned data set used as a work space for storing
network definition statements. This data set is required only if you include a
network definition in your STL input containing at least one NTWRK
statement and you are not running the STL Translator with the NOPREP
execution parameter. It must be defined if you are using JCL or running
under TSO.

SYSUT3 Defines a temporary partitioned data set used as a work space for storing
message generation decks and user tables. This data set is required only if
you include a network definition in your STL input containing at least one
MSGTXT or MSGUTBL statement and you are not running the STL
Translator with the NOPREP execution parameter. It must be defined if you
are using JCL or running under TSO.

STEPLIB Defines a data set containing the WSim host processor load modules and,
optionally, any user exit data sets.

RATEDD Defines an optional rate tables data set. This is required only if your network
contains a RATE statement and the network definition is included in the STL
input data set.

INITDD Defines a partitioned data set containing the preprocessed network
definition. This data set is required only if you include a network definition
in your STL input and you are not running the STL Translator with the
NOPREP execution parameter. This data set can be the same as the MSGDD
data set.

Chapter 22. Using the STL Translator 323

PARMDD Defines an optional sequential data set containing the execution parameters.
The following syntax rules apply to the records in this data set:

v An asterisk (*) in column 1 denotes a comment record.

v One or more parameters may be coded on each record, delimited by
commas.

v Any data following a trailing blank is considered a comment.

v Leading blanks are allowed.

v A trailing comma is not required to indicate continuation of parameters on
the next record.

The BLKSIZE for this data set must be a multiple of 80. This data set is
optional.

SYSLIB Defines an optional partitioned data set whose members contain data to be
included in the STL input data set. This data set is required if you code the
@INCLUDE statement in your STL input data set.

STL Translator return codes
At the end of execution, the STL Translator sets a return code to indicate the status
of the execution. Execution ends prematurely for all return codes except 0. The STL
Translator can return the following codes:

Code Meaning

0 Execution completed successfully.

4 An invalid execution parameter was specified.

8 The SYSPRINT data set failed to open.

12 The SYSIN data set failed to open.

16 The MSGDD, INITDD, SEQOUT, or a work data set failed to open.

20 An error occurred while writing to an output data set.

24 An error occurred while translating the STL program or preprocessing the
network definition.

28 The trace correlation member of the MSGDD data set failed to open.

32 Not enough storage was available to run.

36 An error occurred while storing a partitioned data set member.

324 WSim Script Guide and Reference

Chapter 23. Combining STL programs and network definitions

This chapter explains how to:
v Include network definitions in your STL programs
v Structure STL programs
v Reference STL programs in your network definition
v Combine STL procedures from different STL programs.

Including network definition statements in STL
As you create your STL programs, you can facilitate development of your entire
simulation by including your network definition in the same data set. In this way,
you can easily refer to your network definition as you are creating the messages
that will run through it. You will also find it easier to debug and modify your
simulation using this method.

To define your networks in STL, you must code network definition statements
exactly as you would if they were input to the Preprocessor. This means that you
may not code STL comments within the network definition. You can only code
scripting language comments. Refer to , SC31-8945 for more detailed information
on coding the network definition.

You must code the STL @NETWORK and @ENDNETWORK statements to include
the network definition in your STL input data set. You must place them around the
statements. Also, you cannot code any STL statements after the @NETWORK
statement on the same line. However, you may code STL comments there. You
must code the @ENDNETWORK statement in column one so that the STL
Translator can detect it. Code only one block of network definition statements in
your input data set and place it at the top of the data set following any STL
comments. You may define multiple networks within a single network definition
block.

An example of an STL input data set including network definition statements is
shown below.
/* My STL Input Data Set */
@network
netx ntwrk uti=100,delay=f2,stltrace=yes,mlog=yes
apath path amsg
wsim1 vtamappl bufsize=3000
* LU Definition
wsim1lu lu lutype=lu2,display=(24,80),init=sec,path=(apath)
@endnetwork
@program=amsgx
amsg: msgtxt

say ’Hi’
opcmnd ’zend’
quiesce
endtxt

Note: You can abbreviate the @NETWORK and @ENDNETWORK statements as
@NET and @ENDNET.

The STL Translator also invokes the Preprocessor to validate your network
definition. If you have not made any errors, the STL Translator stores your

© Copyright IBM Corp. 1983, 2015 325

networks into the INITDD output data set and any other message generation decks
you may have coded along with them into the MSGDD data set. It replaces any
members that already exist in these data sets by the same name.

If you made errors when creating your STL programs, the STL Translator does not
add or replace those members in the MSGDD data set. However, it will try to
preprocess the network definition unless you specify the NOPREP execution
parameter. If you made any errors in the network definition, the STL Translator
does not add or replace any members in the output data sets.

Structuring STL programs
The following topics give you guidelines on how to structure your STL programs.

Organizing your STL programs
In your simulation, you will probably want to create many STL programs that each
perform a unique function. The simplest STL program you can create consists of a
single STL procedure beginning with a MSGTXT statement and ending with an
ENDTXT statement. However, you will usually code STL programs that include
multiple procedures.

The best way to structure a program is to code one main procedure that calls the
other procedures defined in the program. Here, you can have multiple interrelated
procedures whose activity can be coordinated by one main procedure.

Coding multiple programs in one STL input data set
You should code all the procedures for one program together in one STL input
data set. You can even code multiple programs in one STL input data set. If you
also want to include the network definition with your STL programs, you can
write your entire simulation in one data set.

To place multiple STL programs in the same data set, you must code the
@PROGRAM and @ENDPROGRAM statements to separate the programs. The STL
Translator does not accept statements between programs, although you may code
comments.

For each program, code the @PROGRAM statement before all the variable
declarations and procedures that make up the program. The STL Translator
considers the @PROGRAM statement to be the first statement in a new program.
Code the @ENDPROGRAM statement as the last statement in the program.

You can also use the @PROGRAM statement to specify a name to be used to store
trace information for a program. See “Obtaining STL trace records” on page 341 for
more information about the STL trace facility.

If you have only one program in your STL input data set, you do not need to code
the @PROGRAM and @ENDPROGRAM statements. You also do not need to code
the @ENDPROGRAM statement for the last program in the data set.

To help you write your simulation in STL, first think of what you want to simulate
in terms of separate tasks. Each task can be thought of as a separate STL program.
This also lets you maintain a library of STL programs that you can use for other
simulations.

326 WSim Script Guide and Reference

Another reason to organize your simulation into multiple programs is that it lets
you reuse variable, constant, and label names. This does not include procedure,
user table, or program names.

When coding multiple programs in your simulation, you must be careful to
initialize the variables before you use them since the resources are shared among
programs.
For example, the first program in Figure 7 declares an integer variable “i” that is

assigned to device counter 1 (or DC1) by the STL Translator. It assigns a value of 5
to “i” that, at runtime, places a value of 5 into DC1. The second program also
declares an integer variable but calls it “j”. This program uses the value of “j”
before initializing it in the statement “s = char(j)”. As you can see in the
corresponding DATASAVE statement, “j” is also referred to as DC1.

If a device in the simulation executes procedure DEF immediately after ABC, you
may expect that “s” would be set to character “0” just by looking at the STL
statements. However, since DC1 is used for both variables “i” and “j”, it would
still be set to 5 upon entering procedure DEF. So “s” is assigned character “5”.

Therefore, always initialize variables if you have multiple programs in your
simulation.

Avoiding misuse of procedure calls
As a general rule, an STL procedure in one program should not call a procedure in
another program. To manage asynchronous conditions, the STL Translator assigns
IF numbers to message generation statements. These numbers are not unique from
program to program. Calling a procedure located in a different source data set can
produce an unwanted and unexpected conflict of these identifiers. Figure 8 on page
328 shows a situation that should be avoided. See “Combining STL procedures
from different STL programs” on page 333 for information on how to combine
programs that must be translated separately.

STL WSim Message Decks
┌─────────────────────┐ ┌──────────────────────────────────────┐
│ @program=first │ │ │
│ integer i │ │ │
│ abc: msgtxt │ │ ABC MSGTXT STLMEM=FIRST │
│ i=5 │ │ SET DC1=5 │
│ endtxt │ │ ENDTXT │
│ @endprogram │ │ │
│ │───────→│ │
│ @program=second │ │ │
│ integer j │ │ │
│ string s │ │ │
│ def: msgtxt │ │ DEF MSGTXT STLMEM=SECOND │
│ s = char(j) │ │ DATASAVE AREA=1, │
│ │ │ TEXT=($CNTR,DC1$) │
│ endtxt │ │ ENDTXT │
│ @endprogram │ │ │
└─────────────────────┘ └──────────────────────────────────────┘

Figure 7. STL input data set translated to message generation statements

Chapter 23. Combining STL programs and network definitions 327

Naming programs, procedures, and user tables
WSim accesses the MSGDD partitioned data set when it needs message generation
decks, user tables, and trace correlation records. You can generate message
generation decks and user tables by running the STL Translator on your STL
procedures and user tables. You can also code program names to let the translator
produce trace correlation records. The names of the members placed in the
MSGDD partitioned data set are the same as those that you code for STL
procedures, user tables, and program names. Therefore, you must code unique
names to produce unique members in the data set.

When you code procedures, user tables, and programs in your STL input with the
same names as members in the MSGDD data set, the STL Translator overwrites
those members as it translates your input. If you code your simulation in several
different STL input data sets, you must run the STL Translator several times. Be
sure that all procedure, user table, and program names are unique.

Finally, you can repeat label names used on STL statements other than MSGTXT
and MSGUTBL in multiple programs without affecting the MSGDD data set or
program execution.

* *
* DO NOT DO THIS! *
* *

┌───────────────────────────┐ ┌─────────────────────────────┐
│ │ │ │
│ /* Program #1 */ │ │ /* Program #2 */ │
│ @program = program1 │ │ @program = program2 │
│ proc1: msgtxt │ ┌───┼→proc2: msgtxt │
│ /***********************/ │ │ │ /*************************/ │
│ /* */ │ │ │ /* */ │
│ /* This program refers */ │ │ │ /* This program contains */ │
│ /* to a procedure */ │ │ │ /* a procedure called */ │
│ /* in another source */ │ │ │ /* from another program. */ │
│ /* data set. */ │ │ │ /* */ │
│ /* */ │ │ │ /*************************/ │
│ /***********************/ │ │ │ . │
│ . │ │ │ . │
│ . │ │ │ . │
│ . │ │ │ endtxt │
│ call proc2───────────────┼────┘ │ @endprogram │
│ . │ └─────────────────────────────┘
│ . │
│ . │
│ endtxt │
│ @endprogram │
└───────────────────────────┘

Figure 8. Example of misuse of calls in separate STL programs

328 WSim Script Guide and Reference

Referencing STL programs in your network definition

A network definition defines resources and operation options for your simulated
network. Your network definition statements tell WSim which STL programs
generate messages for each simulated resource. As explained in , SC31-8945, you
can specify a set of message generation decks or STL procedures for an entire
network, or you can specify a different sequence for each line, terminal, and
device.

If you create your STL programs as recommended previously, they each perform
independent tasks that are part of the whole simulation. Also, they each have one
main procedure call the other procedures defined in the program.

To refer to a program in a network definition statement, just code the main
procedure name.

The following statements and operands let you specify where STL programs are to
be used and other requirements for your network:
v PATH statements in your network definition list the main procedures

representing STL programs to be used by each resource in your simulated
network. For each simulated resource, you can code a PATH statement to specify
the main procedure names representing the STL programs to be executed by the
resource and the order of execution. The programs are executed repeatedly until
the simulation is ended. See , SC31-8945 for more information about how the
procedures (message generation decks) can be listed.

v The PATH operand specifies which PATH statement defines the main
procedures representing the STL programs to be used for a particular resource.

v INCLUDE statements in your network definition let you include any procedures
used by the network during the simulation run. You need to code an INCLUDE
statement for any procedure used in your simulation that is not either included
in a PATH statement or explicitly called or executed within your program. For
example, this can be procedures called on a new path the operator specifies by
issuing the A (Alter) operator command.

v The FRSTTXT operand defines the main procedure representing an STL
program to be used as the first program in a simulation. It is used only once and
not repeated. Typically this procedure contains your logon logic.

v The ATRDECK operand specifies the name of the main procedure representing
an STL program to be invoked automatically to provide automatic terminal
recovery.

Note: Be sure that the CNTRS operand is not coded in your network definition.
This operand can cause problems when using STL programs.

The PATH and INCLUDE statements are coded in your network definition. The
PATH and FRSTTXT operands are coded on the DEV, TP, or LU statement defining
the resource for which they are used or on higher-level statements such as
NTWRK, VTAMAPPL, TCP/IP, and APPCLU statements. The ATRDECK operand
is coded on the DEV or LU statement.

See , SC31-8945 for a more complete explanation of these statements and operands.
You should be familiar with these books so that you are aware of the range of
possibilities available to you when designing the messages to be simulated with
your STL programs.

Chapter 23. Combining STL programs and network definitions 329

The example below shows a portion of a network definition.
testnet ntwrk uti=100,bufsize=6000,delay=f(5),

stltrace=yes,mlog=yes,logdsply=both
mypath path test1,coffee
* ***** ******
appl1 vtamappl
mylu lu lutype=lu2,path=(mypath),init=sec,maxsess=(0,1),

display=(24,80),frsttxt=logon

In the network definition shown above, the LU first executes the main procedure
named LOGON referenced on the FRSTTXT operand. Then it executes the
programs represented by the main procedures named on the PATH statement
MYPATH: TEST1 and COFFEE.

Each main procedure, representing a program, named on a path statement is called
a path entry. When a represented program is named on a path entry, WSim
executes that main procedure representing the program and any procedures called
by that program in the course of its execution.

Suppose that you have written two STL programs, one designed to start a
full-screen editor and the other designed to start a compiler. Each program consists
of a single STL procedure. Figure 9 on page 331 shows what the source data sets
might look like.

330 WSim Script Guide and Reference

The main procedure in each program should be named on a PATH statement in
your network definition. For example, if you have defined an LU named LU1 in
your network definition, you can have it execute EDIT first and COMPILE second
as shown in the network definition that appears in Figure 10.
The path entries specified on the PATH statement correspond to the procedure

names coded in the two example programs. Figure 11 on page 332 illustrates this
relationship.

┌──────────────────────────────┐
│ │
│ /* Program #1 */ │
│ @program = program1 │
│ edit: msgtxt │
│ │
│ /**************************/ │
│ /* */ │
│ /* This data set contains */ │
│ /* an STL program that */ │
│ /* edits a data set. */ │
│ /* */ │
│ /**************************/ │
│ . │
│ . │
│ . │
│ endtxt │
│ @endprogram │
│ │
│ │
│ /* Program #2 */ │
│ @program = program2 │
│ compile: msgtxt │
│ │
│ /**************************/ │
│ /* */ │
│ /* This data set contains */ │
│ /* an STL program that */ │
│ /* invokes a compiler. */ │
│ /* */ │
│ /**************************/ │
│ . │
│ . │
│ . │
│ endtxt │
│ @endprogram │
│ │
└──────────────────────────────┘

Figure 9. Two STL programs

*NETWORK DEFINITION STATEMENTS
*

(This is
the PATH --> LU1PATH PATH EDIT,COMPILE
definition) .

.
(This is .
the LU --> LU1 LU PATH=LU1PATH,...
definition) .

.

.

Figure 10. Network definition to use two STL programs

Chapter 23. Combining STL programs and network definitions 331

As another example, you might design an editor program that contains three
procedures: “edit”, the main procedure; “locate”, which performs an editor locate
instruction; and “change”, which performs an editor change instruction. The
program appears in Figure 12 on page 333.

*WSim NETWORK DEFINITION STATEMENTS
.
.
.

LU1PATH PATH EDIT,COMPILE
│ │

┌────────────────┘ └────────────┐
│ │
│ ┌──────────────────────────────┐ │ ┌──────────────────────────────┐
│ │ │ │ │ │
│ │ /* Program #1 */ │ │ │ /* Program # 2 */ │
│ │ @program = program1 │ │ │ @program = program2 │
└─┼→edit: msgtxt │ └─┼→compile: msgtxt │

│ │ │ │
│ /**************************/ │ │ /**************************/ │
│ /* */ │ │ /* */ │
│ /* This data set contains */ │ │ /* This data set contains */ │
│ /* an STL program that */ │ │ /* an STL program that */ │
│ /* edits a data set. */ │ │ /* invokes a compiler. */ │
│ /* */ │ │ /* */ │
│ /**************************/ │ │ /**************************/ │
│ . │ │ . │
│ . │ │ . │
│ . │ │ . │
│ endtxt │ │ endtxt │
│ @endprogram │ │ @endprogram │
└──────────────────────────────┘ └──────────────────────────────┘

Figure 11. Relationship of PATH statement and STL programs

332 WSim Script Guide and Reference

The network definition for this program would look like the one shown below.
* NETWORK DEFINITION STATEMENTS...
LUPATH PATH EDIT

Note that only the EDIT procedure is referenced on the PATH statement.

Combining STL procedures from different STL programs

Note: Combining procedures from multiple STL programs can be complex and the
results can be difficult to maintain. For this reason, this approach is not
recommended unless it is absolutely necessary (for example, your program is too
large to edit as one data set). Another way to do this is to use the @INCLUDE
statement. See “Including data from other data sets” on page 252 for more
information.

You may need to place procedures that would normally be considered as a part of
one program in more than one STL program. It may be more convenient to use
separate source data sets or you may have written a large STL program that you
now want to break into smaller components. In this case, you can put the STL
statements for various procedures in separate data sets and use the STL Translator
to translate the data sets separately.

To combine multiple programs into one program, declare and initialize all the
variables used in each program in the first program that you translate.

/* STL Program */
edit: msgtxt
/**********************************/
/* */
/* This data set contains an */
/* STL program that edits a data */
/* set. */
/* */
/**********************************/
.
.
.
call locate
.
.
.
call change
.
.
.
endtxt
locate: msgtxt
.
.
.
endtxt
change: msgtxt
.
.
.
endtxt

Figure 12. STL program containing multiple STL procedures

Chapter 23. Combining STL programs and network definitions 333

When you translate the first program, the STL Translator includes a variable
dictionary in the printed listing supplied as part of your STL Translator output.
The variable dictionary indicates which save area, counter, or switch has been
allocated for each variable used in that program and which are used as internal
work variables (that is, there is no associated STL variable). Place ALLOCATE
statements at the beginning of all other programs defining the save area, counter,
or switch mapping specified by the variable dictionary. See “ALLOCATE” on page
363 for specific information about defining save areas, counters, and switches using
the ALLOCATE statement.

Note: There are limits to the number of save areas, counters, and switches that can
be mapped to variables for each STL program. Thus, if you exceed any of these
limits, you may have to translate a large program as two or more separate
programs and combine them. See “ALLOCATE” on page 363 for information about
the numbers available.

See , SC31-8945 for information about how save areas, counters, and switches are
used in message generation statements.

You must also ensure that IF numbers do not overlap among the various programs
being combined and used as one program. Note the largest IF number used in
each program. This number is found at the bottom of the variable dictionary in the
printed listing. Use the @IFNUM statement at the beginning of each following
program to ensure that unique IF numbers are assigned to each program.

You can code @INCLUDE statements in your STL input data set to include your
common ALLOCATE statements and @IFNUM statements. See “@INCLUDE” on
page 358 for more information.

The example below shows how you could code the first program to be translated.
/* First Program */

/**/
/* All variables are explicitly declared below. */
/**/

string data_received
string message_list
integer error_count

proc1: msgtxt

/**/
/* This procedure recognizes received error messages and */
/* appends each one to a list. */
/**/

error_count = 0
message_list = ’’

onin then data_received = buffer /* Save received data. */
wait until onin /* Wait until something is received. */

if index(data_received,’ERROR’) > 0 then /* Error message received. */
do

error_count = error_count + 1
message_list = message_list data_received /* Append this */

/* message to list. */

334 WSim Script Guide and Reference

end
else /* Error message not received. */

nop
endtxt

The following example shows a portion of the variable dictionary included in the
printed listing for the first program:
The next program must include ALLOCATE statements based on the information

included in the variable dictionary for the preceding program. These statements
ensure that the same save areas, counters, and switches are used identically for
each program.

The next program must also include an @IFNUM control statement. The example
below shows how you could code the next program to be used in your combined
program.
/* Next Program */

allocate data_received ’1’
allocate error_count ’DC1’
allocate message_list ’2’
allocate workvar_dc2 ’DC2’
@ifnum = 3 /* Begin numbering IF statements with 3. */
proc2: msgtxt
/***/
/* This procedure tells the operator how many error messages */
/* were received and logs the error message list. */
/***/
say ’Total number of error messages received is’ char(error_count)
log message_list
endtxt

Note: Remember that combining procedures from multiple STL programs into one
program causes maintenance problems. For instance, if you change “proc1” in the
previous example, you must ensure that any resulting changes in the STL variable
dictionary or IF numbers are also reflected in “proc2”.

VARIABLE DICTIONARY
NAME USE CLASS MAPPING DEFINED REFERENCED ON STATEMENT NUMBER
-------------------------------- -------- -------- ------------------- ------- --

DATA_RECEIVED STRING UNSHARED 1 1 8, 10, 13

ERROR_COUNT INTEGER UNSHARED DC1 3 5, 12

MESSAGE_LIST STRING UNSHARED 2 2 6, 13

(WORK VARIABLE) DC2

LARGEST IF NUMBER USED = 2

Chapter 23. Combining STL programs and network definitions 335

336 WSim Script Guide and Reference

Chapter 24. Debugging your STL programs

When you run the STL Translator against your STL input data set, it checks for
errors that prevent execution, such as incorrect syntax. You can find the errors you
need to correct in the printed listing.

Once you correct these errors and rerun the translator, WSim can use the networks
and the resulting message generation decks during a simulation. You may find that
your simulation does not perform as you expect. This can be because of incomplete
or faulty logic.

To identify these types of errors, you can use the Loglist Utility to examine the
results of your simulation run. This procedure is described in , SC31-8947.

You can use the Loglist Utility to obtain information specific to your STL
programs. “Finding and correcting STL Translator syntax errors” explains how to
detect syntax errors in your STL programs.

The Loglist Utility can display various types of records, depending upon what you
request when you run it. The records that trace activity caused by STL statements
are called STL trace records (labeled STRC as the record type in the output). They
are similar to the message trace records (MTRC) provided by the Loglist Utility for
message generation statements.

This chapter explains how to find and correct errors identified during translation
and how to trace program logic and correct logic errors in your programs.

Finding and correcting STL Translator syntax errors
If you code a network definition in your STL input data set and you run the STL
Translator without the NOPREP execution parameter, the STL Translator invokes
the Preprocessor to verify your network definition. You can determine if you made
errors when coding your STL programs and network definition by examining the
return code from the STL Translator. A return code of 24 indicates that you made a
syntax error in one of your programs or in your network definition. Any other
return code besides 0 indicates that some other error occurred, for example, your
data set is full.

Reading error messages
To identify any errors you made when coding your STL programs or network
definition, examine either the printed listing or the sequential output data set (if
you requested one) for error messages. Errors in your STL programs are prefixed
by ITP3xxxI, where 3xxx is the number of the error. Some ITP3xxxI messages are
not errors, but are informational messages that may be output during the
translation of your programs and after the preprocessing of your network
definition.

Errors in your network definition appear in the Preprocessor Output section of
your printed listing. The format of this section is the same as if you ran the
Preprocessor yourself with the network definition as input. These errors are
prefixed by ITP12xxI or ITP13xxI.

© Copyright IBM Corp. 1983, 2015 337

Explanations of the error messages can be found in , SC31-8951. Refer to ,
SC31-8947 for more details on reading the Preprocessor Output listing.

Errors detected by the translator indicate the element of the statement that is in
error, as shown in the following example:
WSim# STL# STATEMENTS
----- ----- ---

.

.

.
00006 * COUNT = COUNT + 1

*** ERROR ***
ITP3044I A VARIABLE OF UNKNOWN TYPE IS USED IN AN EXPRESSION
ITP3044I NAME = COUNT

In this example, the program uses the variable “count” in an expression before the
translator knows its type. The error message gives a brief explanation of the
problem and identifies the variable that caused the error. Error messages are
described in , SC31-8951 along with suggestions for correction.

Some error messages do not specify the statement element that caused the error. In
the following example, the translator cannot identify a single element that is in
error.
WSim# STL# STATEMENTS
----- ----- ---

.

.

.
00005 * COUNT = 88
00006 * MYDATA = ’MARK’
00007 * COUNT = MYDATA

*** ERROR ***
ITP3047I TYPE MISMATCH

In this example, the variable “count” has previously been declared as an integer
variable and the variable “mydata” has been declared as a string variable. STL
does not permit assignment of a string value to an integer variable. The translator
detects a type mismatch error.

Using the variable dictionary to find errors
You can use the variable dictionary, which is included at the end of each STL
program listing produced by the STL Translator, to diagnose some errors. It may
not be apparent why an error such as type mismatch occurs. An examination of
the variable dictionary reveals the following information:
The variable dictionary shows that you used “count” as an integer variable, but

you used “mydata” as a string variable. The type mismatch error is explained.

Reading the variable dictionary
The variable dictionary contains six columns of information:
v NAME
v USE
v CLASS

VARIABLE DICTIONARY
NAME USE CLASS MAPPING DEFINED REFERENCED ON STATEMENT NUMBER
-------------------------------- -------- -------- ------------------- ------- --
COUNT INTEGER UNSHARED DC2 5, 7
MYDATA STRING UNSHARED 2 6, 7...

338 WSim Script Guide and Reference

v MAPPING
v DEFINED
v REFERENCED ON STATEMENT NUMBER.

The NAME column lists the names of all variables used in the STL program.

Note: The name “(WORK VARIABLE)” does not represent an STL variable. It lists
internal resources (save areas, counters, and switches) used during the translation.
You can use this when you combine STL procedures from different STL programs.
For these names, only the MAPPING column contains a value.

The USE column lists how each variable is used by the STL program. Valid values
for the USE column are:

BIT Bit variable.

EXECPROC Execute procedure.

INLABEL Onin label.

INT CON Integer constant.

INTEGER Integer variable.

IO LABEL DEACT ALL IO ONS statement.

LABEL Any label that is not a procedure, user table, onin, or onout label.

MSGUTBL User table.

OUTLABEL Onout label.

PROC Procedure.

PROGRAM Trace information and querying of STL statement numbers.

STR CON String constant.

STRING String variable.

? STL cannot determine the type for this variable. See the error messages in
the printed listing to correct this.

The CLASS column lists the variable classes associated with each variable name.
Valid values for the CLASS column are:

(blank) This variable has no class associated with it.

SHARED This is a shared variable.

UNSHARED This is an unshared variable

? The class of this variable cannot be determined by the STL Translator. See
the error messages in the printed listing to correct this.

The MAPPING column lists the name of the associated resource. This can be used
to determine the value contained in an STL variable when querying resources
during a simulation run. The values in the MAPPING column can be any of the
following:
v Any valid resource or label name. See Part 1, “WSim language statements,” on

page 1 for information about resource and label names.
v (NULL STRING), which indicates the null string ('').
v The first 19 characters of string constants.
v The integer value for integer constants.

Chapter 24. Debugging your STL programs 339

Note: If a PROC, MSGUTBL, or EXECPROC type of variable is referenced,
UNRESOLVED may follow the mapping. If this occurs, it means that a procedure
was called or executed in the STL program which was not found in the program.
This is informational only. It may indicate that you misspelled a procedure name
or it can serve as a reminder that you need to translate another program to place
that procedure into the MSGDD data set.

The DEFINED column lists the statement number where the variable is defined.
BIT, STRING, INTEGER, PROC, EXECPROC, and MSGUTBL statement numbers
appear in this column only if they are explicitly defined in your program. IO
LABEL statement numbers never appear in this column. PROGRAM statement
numbers appear as *PARM* if they are passed as an execution parameter.

The REFERENCED ON STATEMENT NUMBER column lists the statement
numbers where the particular variable is referenced.

Using the event dictionary to find errors
There are two different types of events: ON/SIGNAL events and WAIT/POST
events. The event dictionary groups all uses of certain STL program resources
together for easy reference. So, anywhere an ON/SIGNAL type of event is used
(SIGNAL, ON SIGNAL, QSIGNAL, and WAIT UNTIL SIGNALED STL statements)
it appears in the event dictionary as a SIGNAL type. Anywhere a WAIT/POST
type of event is used (POST, RESET, POSTED, and WAIT UNTIL POSTED STL
statements) it appears in the event dictionary as a POST type.

You can use the event dictionary, located after the variable dictionary, to diagnose
event errors, such as using the same event name for two different types of events.
For example, suppose you coded the following statements:
WSim# STL# STATEMENTS
----- ----- --...

00009 * POST ’EVENT1’...
00030 * RESET ’EVENT2’...
00052 * SIGNAL ’EVENT2’

An examination of the event dictionary reveals the following information:
EVENT DICTIONARY
NAME USE REFERENCED ON STATEMENT NUMBER
-------------------------------- ------ -------------------------------
’EVENT1’ POST 9
’EVENT2’ POST 30
’EVENT2’ SIGNAL 52...

The event dictionary shows that you used a posted event, “EVENT1”, in statement
9 and that you used “EVENT2” as a posted and signaled event in statements 30
and 52. “EVENT2” is a signaled event. Statement 30 is an error since you tried to
reset a signaled event.

Reading the event dictionary
The event dictionary contains three columns of information:
v NAME
v USE

340 WSim Script Guide and Reference

v REFERENCED ON STATEMENT NUMBER.

The NAME column lists the event names used in the STL program. String constant
event names appear enclosed in single quotes (for example, "EVENT1"). Named
constant and string variable event names appear without quotes (for example,
MYEVENT). String expression event names appear as *STRING EXPRESSION* (for
example, POST MYEVENT||"2" would appear this way). The statement DEACT
ALL EVENTS ONS displays an event name of *ALL*.

The USE column lists how each event is used in the STL program. Valid values for
the USE column are:

POST POST type event names.

SIGNAL SIGNAL type event names.

TAG Event tags.

The REFERENCED ON STATEMENT NUMBER column lists the statement
numbers where the particular event is referenced.

Correcting errors
When you find the reason for an error, correct the error in your STL input data set
and retranslate the program. Repeat this process until the translator detects no
errors. When no errors are found, the translator issues a return code of 0.

Correct and maintain STL programs in your STL input data sets. Do not attempt
to correct errors by modifying the statements in the sequential or MSGDD
output data sets created by the translator.

The reasons for this restriction are the following:
v By making all changes to the STL source code, you can centralize maintenance

of your program. Otherwise, you must modify the output data sets each time
you translate the STL input data set.

v The STL trace facility uses the statement numbers assigned by the STL
Translator. If you modify the output data sets and execute the modified
statements, the STL trace facility can produce confusing or misleading results.
Likewise, statement numbers displayed by the Q (Query) operator command
may be incorrect.

Obtaining STL trace records
To obtain information about your STL program when using the Loglist Utility, you
must take the following steps:
v Create statement correlation records
v Log STL trace records
v Print STL trace records.

Creating statement correlation records
Since the STL Translator translates STL statements into message generation
statements, WSim must be able to correlate these two sets of statements to obtain
trace information related to a particular STL statement. To use STL traces, you
must request statement correlation records (which correlate the two types of
statements) when you run the STL Translator.

Chapter 24. Debugging your STL programs 341

See the information about the PROGRAM execution parameter in “Using STL
Translator execution parameters” on page 319 for information about obtaining
these records. The methods of obtaining these records are summarized here for
your convenience.

You can instruct the STL Translator to provide statement correlation records in two
ways:
v Include @PROGRAM statements in your STL input data set. These statements

associate the names you supply with STL programs and request statement
correlation records as part of your translator output. If you include these
statements, you will get correlation records each time your programs translate
without errors.

v Specify the execution parameter PROGRAM=name when you run the STL
Translator. This parameter also associates the name you supply with the first
program in your STL input data set and requests statement correlation records
as part of your translator output.
The PROGRAM=name execution parameter overrides the @PROGRAM statement
for the first program in your input data set.

Note: The program name that you assign must not be the same as names
assigned to STL procedures, MSGUTBL statements, or other program names
already translated and stored in the MSGDD data set.

When you request statement correlation records, the STL Translator performs these
actions:
v Includes the specified program name in the title line of each page of the STL

printed listing
v Creates an extra member in the MSGDD data set containing statement

correlation records. The program name you supply is the name of this data set
member.

Logging STL trace records
The message logging facility, when active, writes messages to the log data set
containing all data that simulated resources transmit or receive in a specified
network. WSim automatically logs all message traffic to and from your simulated
terminals unless you have coded MLOG=NO for your network.

WSim does not log STL trace records automatically. You can request these records
in your network definition or with an operator command. To request these records
in your network definition, you must code the STLTRACE=YES operand on DEV,
TP, or LU statements for the terminals for which you want the trace recorded. You
can also code it on higher-level statements (NTWRK, VTAMAPPL, APPCLU, or
TCPIP) and it will default down to the lower-level terminals. The following
example shows how STL trace records could be requested for an LU:
LU0001 LU STLTRACE=YES,...

An operator can also request STL trace records using the A (Alter) command. See ,
SC31-8948 for information about this command.

If the STL trace is active for a simulated terminal as WSim executes message
generation statements, it correlates them with the corresponding STL statements.
To make this correlation, WSim uses the statement correlation records created by
the STL Translator.

342 WSim Script Guide and Reference

Note: Coding STLTRACE=YES uses more computing power and more log space.
You will probably want to use it while writing and debugging your STL programs
and remove it (or code STLTRACE=NO) when running your simulation after your
programs are debugged.

Printing STL trace records
When you run the Loglist Utility, you use control commands to specify the output
format you want. These commands can be part of your job input stream or you
can enter them from the console. See , SC31-8947 for detailed information about
these commands. If STRC records (STL trace records) are present in your log data
set, the Loglist Utility will format and print them unless you include the NOSTRC
control command or some other control command that suppresses printing of STL
trace records when you run the Loglist Utility.

When you run the Loglist Utility, you can instruct it to print only STL trace records
by using the STRC control command. Or, you can combine the STRC control
command with other control commands for the Loglist Utility to select various
combinations of record types for printing.

For example, if you use the following control commands (either by including them
in your SYSIN data set or by entering them at the console) when running the
Loglist Utility, it produces only data records and STL trace records for the terminal
MYTERM.
DATA
STRC
T MYTERM
RUN
END

Reading STL trace output
In your Loglist Utility output, STL trace records have a record type of STRC,
enabling you to identify them quickly. These records have the following format:
ITP35WWI PROGRAM= XXXXXXXX STMT# = YYYYY PROCEDURE= ZZZZZZZZ: trace data

The following information is contained in these records:

WW A unique 2-character identifier for each message.

XXXXXXXX The program name as specified on the PROGRAM execution parameter or
an STL @PROGRAM statement

YYYYY The number of the STL statement being traced by this STL trace record

ZZZZZZZZ The name of the STL procedure currently being executed

trace data A message that describes the activity for the statement being traced. See ,
SC31-8951 for information about the messages that can appear as trace data
in these records.

Figure 13 on page 344 displays sample Loglist Utility output containing STL trace
records along with other types of records. The following sections explain how to
read this output and use it in tracing program activity.

Chapter 24. Debugging your STL programs 343

NETWORK APPCLU/TCPIP/VTAMAPPL DEV/LU/TP START STOP READY RECORD HEADER DATA TERM MESSAGE USER SEQUENCE
NAME NAME NAME TIME TIME TIME TYPE FLAGS LENG TYPE DECK DATA NUMBER

14563706 0002026 11000000 CNSL 0800 000000 74
Workload Simulator (WSim) Version 1, Release 1.0

--
14564335 0002026 11000000 CNSL 0800 000000 13

I SLUECHO,S,L
--

14564379 0002026 11000000 CNSL 0800 000000 51
ITP029I INITIALIZATION COMPLETE FOR NETWORK SLUECHO

--
14564379 0002026 11000000 CNSL 0800 000000 31

ITP006I NETWORK SLUECHO STARTED
--
SLUECHO APPL1 SLU-1 14564379 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 0
ITP3515I PROGRAM=LOGECHO STMT#=00006 PROCEDURE=LOGON : EXECUTION RESUMES

--
14564379 0002026 11000000 CNSL 0800 000000 60

ITP137I SLUECHO SLU -00001 - Logon processing begins...
--
SLUECHO APPL1 SLU-1 14564379 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 1
ITP3518I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : EXECUTION INTERRUPTED
ITP3515I PROGRAM=LOGECHO STMT#=00010 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3518I PROGRAM=LOGECHO STMT#=00010 PROCEDURE=LOGON : EXECUTION INTERRUPTED

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 +XMIT 8000 880020 34 E2 LOGON 00 4

XMIT INITIATE SELF REQUEST
TH 2C0000010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=00 OAF=01 ODAI=0 SEQUENCE=1
RH 0B8000 REQUEST FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 01068101 C4F4C1F3 F2F7F8F2 F308C9E3 D7C5C3C8 D6400000 00 *..a.D4A327823.ITPECHO ... *

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 +RECV 8000 080020 12 E2 LOGON 00 5

RECV INITIATE SELF RESPONSE
TH 2C0001000001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=00 ODAI=0 SEQUENCE=1
RH 8B8000 RESPONSE FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 010681 *..a *

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 6
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 RECV 8000 080000 48 E2 LOGON 00 7

RECV BIND SESSION REQUEST
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31010303 B1903080 000087C7 00000200 00000000 18500000 7E000008 C9E3D7C5 *..........gG.........&..=...ITPE*

00000020 C3C8D640 000000 *CHO ... *
BIND SESSION FORMAT 0 TYPE=NON-NEGOTIABLE FM PROFILE 3 TS PROFILE 3

PRIMARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=DEF OR EXC END BRACKET SENT
SECONDARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=EXCEPTION END BRACKET NOT SENT
COMMON PROTOCOLS: SEGMENTS SUPPORTED FM HEADERS NOT ALLOWED BRACKETS RESET BETB BRACKET TERMINATION RULE 1

ALTERNATE CODE SET NOT USED HALF-DUPLEX FLIP-FLOP RECOVERY RESPONSIBILITY=PRIMARY
CONTENTION WINNER=SECONDARY

SECONDARY SEND PACING COUNT=NONE SECONDARY RECEIVE PACING COUNT=NONE ADAPTIVE SESSION PACING NOT SUPPORTED
SECONDARY MAXIMUM RU SEND SIZE=1024 PRIMARY MAXIMUM RU SEND SIZE=1536
PRIMARY SEND PACING COUNT=NONE PRIMARY RECEIVE PACING COUNT=NONE
LU TYPE 2 DEFAULT SCREEN SIZE=024,080 ALTERNATE SCREEN SIZE=NONE
PRIMARY LU NAME=ITPECHO CRYPTOGRAPHIC FIELD=NONE

Figure 13. Sample Loglist Utility Output with STL Trace Records, part 1 of 2

344 WSim Script Guide and Reference

Tracing a sample STL program
To show how the STL trace records can be used to trace an STL program, the
following example presents an STL program with a network definition included,
and the resulting STL printed listing. To explain how the STL program relates to
the Loglist Utility output, excerpts from the output presented in Figure 13 on page
344 and explanations of the output's meaning follow the sample listings.

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 8
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 XMIT 8000 880000 10 E2 LOGON 00 9

XMIT BIND SESSION RESPONSE
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31 *. *

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 RECV 8000 080000 10 E2 LOGON 00 10

RECV START DATA TRAFFIC REQUEST
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 11
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET
ITP3515I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3512I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : DO WHILE CONDITION MET
ITP3516I PROGRAM=LOGECHO STMT#=00012 PROCEDURE=LOGON : WAIT OR TRANSMIT INTERRUPT BEGINS

--
SLUECHO APPL1 SLU-1 14564430 14564432 14564430 XMIT 8000 880000 10 E2 LOGON 00 12

XMIT START DATA TRAFFIC RESPONSE
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
SLUECHO APPL1 SLU-1 14564482 14564482 14564482 RECV 8000 080000 130 E2 LOGON 00 16

RECV (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0380A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1 BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU F5C7114E 7F1DF8E6 C5D3C3D6 D4C540E3 D640C9E3 D7C5C3C8 D64B1D60 40C5D5E3 *5G.+".8WELCOME TO ITPECHO..- ENT*

00000020 C5D97EC5 C3C8D640 4040C3D3 C5C1D97E D9C5E2E3 D6D9C540 4040F57E E2E3D9C9 *ER=ECHO CLEAR=RESTORE 5=STRI*
00000040 D5C740D9 C5D7E340 4040F97E D9C5D7C5 C1E31150 50C5D5E3 C5D940C4 C1E3C140 *NG REPT 9=REPEAT.&&ENTER DATA *
00000060 E3D640C5 C3C8D640 C2C5D3D6 E67A11D1 5F1D4013 115D7F1D F0 *TO ECHO BELOW:.J–. ..)".0 *
--
SLUECHO APPL1 SLU-1 14564482 0002026 11000000 STRC 0004 081000 55 E2 LOGON 00 17
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION MET; LOGGED_ON = ON
ITP3514I PROGRAM=LOGECHO STMT#=00012 PROCEDURE=LOGON : ONIN CONDITION MET; WAIT CONDITION SATISFIED

--
SLUECHO APPL1 SLU-1 14564483 14564483 14564480 XMIT 8000 880000 9 E2 LOGON 00 19

XMIT RESPONSE
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 838000 RESPONSE FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1

--
SLUECHO APPL1 SLU-1 14564530 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 20
ITP3515I PROGRAM=LOGECHO STMT#=00013 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3512I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : DO WHILE CONDITION NOT MET

--
14564530 0002026 11000000 CNSL 0800 000000 60

ITP137I SLUECHO SLU -00001 - Logon processing complete.
--
SLUECHO APPL1 SLU-1 14564530 0002026 11000000 STRC 0004 081000 22 E2 ECHO 00 22
ITP3519I PROGRAM=SLUECHO STMT#=00003 PROCEDURE=ECHO : EXECUTION CONTINUES
ITP3516I PROGRAM=SLUECHO STMT#=00004 PROCEDURE=ECHO : WAIT OR TRANSMIT INTERRUPT BEGINS

--
SLUECHO APPL1 SLU-1 14564531 14564531 14564530 XMIT 8000 880000 20 E2 ECHO 00 24

XMIT (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU 7DD1E511 D160C885 939396 *’JV.J-Hello *

--

Figure 14. Sample Loglist Utility output with STL trace records, part 2 of 2

Chapter 24. Debugging your STL programs 345

The sample STL program and network definition
The example below shows the STL input data set containing the network definition
and program that were used to create the sample STL trace records. This network
consists of a single VTAMAPPL named APPL1 with a single secondary LU
half-session named SLU. Notice that STLTRACE=YES has been coded on the
NTWRK statement, instructing WSim to write STL trace records to the log data set.
The operand MLOG=YES has been coded on the NTWRK statement to instruct
WSim to log all messages sent and received in the network.
@network
sluecho ntwrk bufsize=6000,display=(24,80),

delay=f(1),uti=50,conrate=yes,
stltrace=yes,mlog=yes,msgtrace=no

slupath path echo
appl1 vtamappl
slu lu lutype=lu2,init=sec,

path=(slupath),frsttxt=logon
@endnetwork
@program = logecho
bit logged_on
logon: msgtxt
/* Logon to ITPECHO. */
say ’Logon processing begins...’
logged_on = off
check: onin index(screen,’WELCOME’) > 0 then logged_on = on
initself(’ITPECHO’,’D4A32782’)
do while logged_on = off

wait until onin
end

deact check
say ’Logon processing complete.’
endtxt

This example traces the LOGON program specified on the FRSTTXT operand of
the LU statement. The FRSTTXT operand specifies the name of the program to be
executed when the device is first started. It is typically used to log on to an
application. After the LOGON program finishes, execution continues with the
programs listed on the PATH statement, in this case, the program ECHO. (See
Chapter 23, “Combining STL programs and network definitions,” on page 325 for
more information about path entries.)

Since the simulated LU named SLU initiates the session, INIT=SEC is coded on the
LU statement. Notice, however, that the RESOURCE operand has not been coded.
Thus, the LOGON program must use the INITSELF statement to specify an LU
partner and initiate the session. See “Logging on and off an application” on page
278 for more information about initiating SNA sessions.

The other operands in the network definition define various options for the
network and for the simulated LU.

The sample logon program consists of a single STL procedure named LOGON.
Note that this is the name coded as the FRSTTXT operand on the LU statement in
the network definition.

The first statement in LOGON is an @PROGRAM statement, which assigns the
name LOGECHO to the program. This name is important because it will be
referred to later in the STL trace records. Notice that the name of the program used
for STL trace records is different from the name of the procedure, which is coded
on the MSGTXT statement in the STL program.

346 WSim Script Guide and Reference

This program logs on to the ITPECHO VTAM application that is provided with
WSim. If you are not familiar with ITPECHO, see , SC31-8947 for a description.

The logic of LOGECHO is simple: Initiate a session with ITPECHO and wait until
ITPECHO sends a screen containing the word “WELCOME”.

The sample printed listing
Figure 15 shows a portion of the STL printed listing generated for the sample
program. This printed listing was generated with the NOWSIM execution
parameter, so message generation statements are not included. The STL statement
numbers are referenced in the STRC records included in the Loglist Utility output.
In the example shown in Figure 15, notice the assignment of statement numbers.

The ONIN statement is statement number 8 and the INITSELF statement
immediately following is number 10. The skip in numbers occurs because the STL
Translator assigns a statement number to the THEN clause of the ONIN statement,
in this case, number 9.

If you include message generation statements in your printed listing, STL
statement number 9 will appear beside the message generation statement
equivalent to statement 9. When using the Loglist Utility output, remember that
there may be times when an STL statement number refers only to a message
generation statement. In these cases, refer back to the preceding STL statement.

The Loglist Utility output
You can use the output from the Loglist Utility to trace the logic used in your
program. To help you understand this process, this section provides excerpts from
the output shown in Figure 13 on page 344, which was generated from the log data
set created when the sample program was executed.

In the sample output in Figure 13 on page 344, records for the LU named SLU are
labeled SLU-1 because the records are for the first (and only) half session defined
for the LU. The following discussion breaks the trace example into several steps
and explains the actions that created the records for each step. Each record is
followed by an explanation of the system activity. The Loglist Utility records have
been shortened for presentation here.

WSim# STL# STATEMENTS
----- ----- ---

00001 * @network
00002 * @endnetwork

*** MESSAGE ***
ITP3172I NETWORK DEFINITION IS IN PREPROCESSOR OUTPUT BELOW

00003 * @program = logecho
00004 * bit logged_on
00005 * logon: msgtxt
00006 * /* Logon to ITPECHO. */

* say ’Logon processing begins...’
00007 * logged_on = off
00008 * check: onin index(screen,’WELCOME’) > 0 then logged_on = on
00010 * initself(’ITPECHO’,’D4A32782’)
00011 * do while logged_on = off
00012 * wait until onin
00013 * end
00014 * deact check
00015 * say ’Logon processing complete.’
00016 * endtxt

Figure 15. STL printed listing for STL trace output example

Chapter 24. Debugging your STL programs 347

Step 1:

The first record shows that execution of the procedure LOGON has resumed
(actually, in this case, execution has just started) with statement number 6, the first
statement after the MSGTXT statement. This statement is the SAY statement. The
second record is a log of the message written to the operator's console.

The remaining records show that execution is interrupted on statement number 8,
resumed on number 10, and then interrupted again. This may seem strange at first,
but the explanation illustrates some important points about how WSim processes
statements.

The first point to remember is that the statement number included with the
EXECUTION INTERRUPTED message is the number of the last statement
executed. This means that the ONIN statement (number 8) was executed (that is,
the ONIN condition was activated and ready to test incoming messages) and
WSim stopped before executing the INITSELF. This brings up the second point. On
the first execution cycle for a device, WSim implements an initial intermessage
delay before executing the first statement that would cause a message to be sent
(in this case, the INITSELF). Since any statements prior to this point have been
executed, the initial intermessage delay could be changed by coding a DELAY
statement at the beginning of the procedure.

The initial execution proceeded up to the point at which the INITSELF (statement
number 10) would be executed and then stopped for the first intermessage delay.
After the delay expired, execution resumed with the INITSELF, which caused a
message to be sent. Execution was once again interrupted. An INITSELF statement
always interrupts execution. Execution of the procedure will not resume until the
session has been fully established.

Step 2:

In the next step, SLU sends the INITIATE SELF request to the host as a result of
the INITSELF statement. The request contains the name of the requested session
partner, ITPECHO.

--
SLUECHO APPL1 SLU-1 14564379 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 0
ITP3515I PROGRAM=LOGECHO STMT#=00006 PROCEDURE=LOGON : EXECUTION RESUMES

--
14564379 0002026 11000000 CNSL 0800 000000 60

ITP137I SLUECHO SLU -00001 - Logon processing begins...
--
SLUECHO APPL1 SLU-1 14564379 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 1
ITP3518I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : EXECUTION INTERRUPTED
ITP3515I PROGRAM=LOGECHO STMT#=00010 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3518I PROGRAM=LOGECHO STMT#=00010 PROCEDURE=LOGON : EXECUTION INTERRUPTED

--

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 +XMIT 8000 880020 34 E2 LOGON 00 4

XMIT INITIATE SELF REQUEST
TH 2C0000010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=00 OAF=01 ODAI=0 SEQUENCE=1
RH 0B8000 REQUEST FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 01068101 C4F4C1F3 F2F7F8F2 F308C9E3 D7C5C3C8 D6400000 00 *..a.D4A327823.ITPECHO ... *

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 +RECV 8000 080020 12 E2 LOGON 00 5

RECV INITIATE SELF RESPONSE
TH 2C0001000001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=00 ODAI=0 SEQUENCE=1
RH 8B8000 RESPONSE FM DATA-FM HEADER ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 010681 *..a *

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 6
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET

--

348 WSim Script Guide and Reference

SLU receives a positive INITIATE SELF response. An STL trace record is logged
showing that the incoming response has been tested by the active ONIN condition
on statement number 8. This condition tests the screen image buffer for the string
"WELCOME" sent by ITPECHO. The condition is not met because SLU has not yet
received this data. Since ONIN conditions remain active until a DEACT or
ENDTXT statement is executed, this condition will be evaluated for all messages
that SLU receives during execution of the LOGON procedure.

Step 3:

In this step, SLU receives a BIND SESSION request from ITPECHO. Again, the
ONIN condition is evaluated, and the condition is not met. Next, SLU transmits a
positive BIND SESSION response. WSim generates this response for SLU
automatically. STL program execution has not yet resumed because session
establishment is not complete.

Step 4:

Here SLU receives the START DATA TRAFFIC request from ITPECHO, indicating
that session establishment is complete. Once again, the ONIN condition is
evaluated and not met.

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 RECV 8000 080000 48 E2 LOGON 00 7

RECV BIND SESSION REQUEST
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31010303 B1903080 000087C7 00000200 00000000 18500000 7E000008 C9E3D7C5 *..........gG.........&.=...ITPE*

00000020 C3C8D640 000000 *CHO ... *
BIND SESSION FORMAT 0 TYPE=NON-NEGOTIABLE FM PROFILE 3 TS PROFILE 3

PRIMARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=DEF OR EXC END BRACKET SENT
SECONDARY PROTOCOLS: RU CHAINING=MULTIPLE REQUEST MODE=IMMEDIATE RESPONSE REQUESTED=EXCEPTION END BRACKET NOT SENT
COMMON PROTOCOLS: SEGMENTS SUPPORTED FM HEADERS NOT ALLOWED BRACKETS RESET BETB BRACKET TERMINATION RULE 1

ALTERNATE CODE SET NOT USED HALF-DUPLEX FLIP-FLOP RECOVERY RESPONSIBILITY=PRIMARY
CONTENTION WINNER=SECONDARY

SECONDARY SEND PACING COUNT=NONE SECONDARY RECEIVE PACING COUNT=NONE ADAPTIVE SESSION PACING NOT SUPPORTED
SECONDARY MAXIMUM RU SEND SIZE=1024 PRIMARY MAXIMUM RU SEND SIZE=1536
PRIMARY SEND PACING COUNT=NONE PRIMARY RECEIVE PACING COUNT=NONE
LU TYPE 2 DEFAULT SCREEN SIZE=024,080 ALTERNATE SCREEN SIZE=NONE
PRIMARY LU NAME=ITPECHO CRYPTOGRAPHIC FIELD=NONE

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 8
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 XMIT 8000 880000 10 E2 LOGON 00 9

XMIT BIND SESSION RESPONSE
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU 31 *. *

--

--
SLUECHO APPL1 SLU-1 14564430 14564430 14564430 RECV 8000 080000 10 E2 LOGON 00 10

RECV START DATA TRAFFIC REQUEST
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 6B8000 REQUEST SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--
SLUECHO APPL1 SLU-1 14564430 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 11
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION NOT MET

Chapter 24. Debugging your STL programs 349

Step 5:

With session establishment complete, execution resumes with the next statement
following the INITSELF. In statement number 11, the DO WHILE condition is met
since the bit variable “logged_on” has not been turned ON by the ONIN condition.
That is, SLU still has not received the “WELCOME” screen from ITPECHO. Since
the condition “logged_on = off” is true, the statements in the DO WHILE group
are executed. Execution of statement 12 (WAIT UNTIL ONIN) causes SLU to
interrupt execution until it receives the next message from ITPECHO.

As for the BIND response in Step 3, WSim automatically generates a response to
the START DATA TRAFFIC received in the previous step.

Step 6:

Shortly, SLU receives a formatted 3270 data stream from ITPECHO. This contains
the “WELCOME” screen SLU has been waiting for. The ONIN condition from
statement 8 is finally met and “logged_on” is set to ON. The WAIT UNTIL ONIN
condition from statement 12 is met (and would be met by any incoming message
regardless of its content) and the WAIT condition is reset.

Execution resumes with the statement immediately following the WAIT, in this
case, the END statement (13) and execution loops back to the DO WHILE
statement (11). This time the DO WHILE condition “logged_on = off” is false and
execution skips to the next statement after the DO WHILE group.

ITP3515I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3512I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : DO WHILE CONDITION MET
ITP3516I PROGRAM=LOGECHO STMT#=00012 PROCEDURE=LOGON : WAIT OR TRANSMIT INTERRUPT BEGINS

--
SLUECHO APPL1 SLU-1 14564430 14564432 14564430 XMIT 8000 880000 10 E2 LOGON 00 12

XMIT START DATA TRAFFIC RESPONSE
TH 2D0001010001 FID=2 WHOLE SEGMENT EXPEDITED FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH EB8000 RESPONSE SESSION CONTROL ONLY IN CHAIN RESPONSE TYPE=DEF1
RU A0 *. *

--

--
SLUECHO APPL1 SLU-1 14564482 14564482 14564482 RECV 8000 080000 130 E2 LOGON 00 16

RECV (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 0380A0 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1 BEGIN BRACKET

INDICATORS= CHANGE DIRECTION
RU F5C7114E 7F1DF8E6 C5D3C3D6 D4C540E3 D640C9E3 D7C5C3C8 D64B1D60 40C5D5E3 *5G.+".8WELCOME TO ITPECHO..- ENT*

00000020 C5D97EC5 C3C8D640 4040C3D3 C5C1D97E D9C5E2E3 D6D9C540 4040F57E E2E3D9C9 *ER=ECHO CLEAR=RESTORE 5=STRI*
00000040 D5C740D9 C5D7E340 4040F97E D9C5D7C5 C1E31150 50C5D5E3 C5D940C4 C1E3C140 *NG REPT 9=REPEAT.&&ENTER DATA *
00000060 E3D640C5 C3C8D640 C2C5D3D6 E67A11D1 5F1D4013 115D7F1D F0 *TO ECHO BELOW:.J–. ..)".0 *
--
SLUECHO APPL1 SLU-1 14564482 0002026 11000000 STRC 0004 081000 55 E2 LOGON 00 17
ITP3514I PROGRAM=LOGECHO STMT#=00008 PROCEDURE=LOGON : ONIN CONDITION MET; LOGGED_ON = ON
ITP3514I PROGRAM=LOGECHO STMT#=00012 PROCEDURE=LOGON : ONIN CONDITION MET; WAIT CONDITION SATISFIED

--
SLUECHO APPL1 SLU-1 14564483 14564483 14564480 XMIT 8000 880000 9 E2 LOGON 00 19

XMIT RESPONSE
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 838000 RESPONSE FM DATA ONLY IN CHAIN RESPONSE TYPE=DEF1

--
SLUECHO APPL1 SLU-1 14564530 0002026 11000000 STRC 0004 081000 22 E2 LOGON 00 20
ITP3515I PROGRAM=LOGECHO STMT#=00013 PROCEDURE=LOGON : EXECUTION RESUMES
ITP3512I PROGRAM=LOGECHO STMT#=00011 PROCEDURE=LOGON : DO WHILE CONDITION NOT MET

--

350 WSim Script Guide and Reference

Step 7:

In the last step, the execution of the SAY statement (statement 15) is logged. The
next record shows that "EXECUTION CONTINUES" with statement 3 of the
procedure ECHO. This means that WSim executed the ENDTXT statement
(statement 16) in LOGON, and execution continued with the first program listed
on the PATH statement in the network definition. Execution of the ENDTXT
statement also deactivated the ONIN condition from statement 8. (WAIT UNTIL
ONIN conditions like statement 12 are automatically deactivated when the WAIT is
reset.)

Control has now passed to the ECHO procedure and SLU has sent data to
ITPECHO, causing a Transmit Interrupt.

--
14564530 0002026 11000000 CNSL 0800 000000 60

ITP137I SLUECHO SLU -00001 - Logon processing complete.
--
SLUECHO APPL1 SLU-1 14564530 0002026 11000000 STRC 0004 081000 22 E2 ECHO 00 22
ITP3519I PROGRAM=SLUECHO STMT#=00003 PROCEDURE=ECHO : EXECUTION CONTINUES
ITP3516I PROGRAM=SLUECHO STMT#=00004 PROCEDURE=ECHO : WAIT OR TRANSMIT INTERRUPT BEGINS

--
SLUECHO APPL1 SLU-1 14564531 14564531 14564530 XMIT 8000 880000 20 E2 ECHO 00 24

XMIT (DATA) REQUEST
TH 2C0001010001 FID=2 WHOLE SEGMENT NORMAL FLOW DAF=01 OAF=01 ODAI=0 SEQUENCE=1
RH 039020 REQUEST FM DATA ONLY IN CHAIN RESPONSE TYPE=EXCP

INDICATORS= CHANGE DIRECTION
RU 7DD1E511 D160C885 939396 *’JV.J-Hello *

--

Chapter 24. Debugging your STL programs 351

352 WSim Script Guide and Reference

Part 3. Reference to STL statements and functions

© Copyright IBM Corp. 1983, 2015 353

354 WSim Script Guide and Reference

Chapter 25. Reference to STL statements

This chapter contains detailed descriptions of all the STL statements that begin
with an STL keyword. Statement syntax and usage considerations are included in
the description of each statement.

You can code labels or names at the beginning of each of these statements.
However, labels or names are not included in the syntax definitions, except in
cases in which they have particular importance (MSGTXT, ONIN, ONOUT, and
MSGUTBL).

Assignment statements are not included in this chapter because these statements
do not begin with an STL keyword. For a description of assignment statements, see
the information about assignment statements in “Using assignment statements” on
page 246.

Note: This chapter lists only keywords that begin a statement. Keywords used
within a statement are described with the keyword they follow.

@EJECT

@EJECT

Function

The @EJECT control statement forces a page eject for the STL printed listing.

Examples
proc1: msgtxt /* I want this procedure to be on one page ... */
&#8942;
endtxt
@eject
proc2: msgtxt /* ... and this procedure to be on another page. */
&#8942;
endtxt

@GENERATE

@GENERATE
WSim_statements
@ENDGENERATE

Where

WSim_statements are message generation statements enclosed in single or double
quotation marks. You may use STL variables and named string constants to form
the statements (string operators and functions are not permitted).

© Copyright IBM Corp. 1983, 2015 355

Function

The @GENERATE control statement enables you to include message generation
statements directly. When the STL Translator encounters an @GENERATE
statement, it enters “generate mode,” and will remain in this mode until it
processes the @ENDGENERATE statement. While in generate mode, the translator
processes only string constants, variables, and comments. Resources—counters,
save areas, and switches—will be substituted for the variable names, and the
resulting string constant expression will be output.

Examples

The following code includes message generation statements in an STL program.
@generate
’ WTO (HELLO)’
’ SET ’a’=12345’ /* "a" is an integer variable. */
@endgenerate

The preceding example generates the following message generation statements:
WTO (HELLO)
SET DC1=12345

Notes
v The @GENERATE statement is valid only inside an STL procedure.
v The @GENERATE and @ENDGENERATE statements can function as a DO-END

statement group when coded as part of an IF, ONIN, ONOUT, or ON
SIGNALED statement.

v You can abbreviate @GENERATE as @GEN and @ENDGENERATE as
@ENDGEN.

v For more information about using the @GENERATE control statement, see
“Including message generation statements in STL programs” on page 251.

v While in generate mode, be careful when coding string constants containing
single quotation marks (') especially when the single quotation mark is used as
the string constant delimiter. WSim interprets pairs of quotation marks as one
quotation mark. Therefore, to code a quotation mark in a string, you must
double each instance of a quotation mark, as shown in the following example.
Note that this rule only applies in generate mode. For STL coding, you would
simply double a quotation mark that you did not intend to use as a string
delimiter character.
@gen
’ TEXT (It is 2 o’clock)’ /* WRONG! STL error. */
’ TEXT (It is 2 o’’clock)’ /* WRONG! OK for STL, but */

/* flagged by preprocessor. */
’ TEXT (It is 2 o’’’’clock)’ /* RIGHT! */
" TEXT (It is 2 o’’clock)" /* RIGHT! */
" TEXT (It is 2 o’clock)" /* WRONG! OK for STL, but */

/* flagged by preprocessor. */
@endgen

v The statements must conform to the rules for coding WSim statements. See
Part 1, “WSim language statements,” on page 1 for more information about
requirements for message generation statements.

v If you include a network definition in your STL input data set, you can also
include entire message generation decks within it. See “@NETWORK” on page
360 for more information.

356 WSim Script Guide and Reference

v No syntax checking is done and offsets are not added for save areas when the
save area number is included as a variable name.

v In order to preserve the integrity of the STL trace correlation file, the statement
must be started before column 16. Statements started after column 15 are
assumed to be a continuation of the prior statement. The label statement should
not be coded. The statement numbers in the STL trace output may not match
your STL program if the rules for the @GENERATE statement are not followed.
For example, the following @GENERATE statements would maintain the integrity of
the trace correlation file and the statement sequence numbers.
@generate
’ WTO (A text message) ’ -> Starts in col 15
’ ’ -> Blank line
’ TEXT (A message that), ’ -> Starts in col 15
’ (wraps) ’ -> Continued in 16
’* A comment line ’ -> Comment line
@endgenerate

The following @GENERATE statements would cause confusion and possibly
incorrect trace output messages during execution of an STL program containing
the statements.
@generate
’ WTO (A text message) ’ -> Starts in col 16
’ TEXT (A message that), ’ -> Valid start but
’ (wraps) ’ -> continued before

col 16
’MYLABEL LABEL ’ -> Should not code
@endgenerate

@IFNUM

@IFNUM = starting_number

Where

starting_number is an integer constant with a value from 1 to 4095.

Function

The @IFNUM control statement specifies the number of the first input (WHEN=IN)
or output (WHEN=OUT) IF statement generated by the STL Translator. When this
statement is coded in an STL program, generated IF statements will be assigned
numbers beginning with starting_number up to a maximum of 4095.

This statement is valid only when coded outside of an STL procedure.

Examples
@ifnum = 30 /* Begin IF numbering with 30. */

Note

You should code the @IFNUM control statement only under these conditions:
1. You are trying to coordinate procedures in multiple STL programs.

/* Program #1 */
@program = prog1
proc1: msgtxt

Chapter 25. Reference to STL statements 357

/***/
/* WSim code generated for this program will begin with IF */
/* number 1. This is the default. PROC2 is called in */
/* this program but is not included in this program. */
/* You must be careful to coordinate IF numbering in */
/* such cases. */
/***/
onin substr(ru,1,5) = ’Hello’ then ready = on
call proc2
endtxt
@endprogram

/* Program #2 */
@program = prog2
@ifnum = 20
proc2: msgtxt
/***/
/* WSim code generated for this program will begin with IF */
/* number 20. This is caused by the @IFNUM control state- */
/* ment. This statement is needed because PROC2 is */
/* called by a procedure that is not included in this */
/* program. */
/***/
onin substr(ru,1,7) = ’Goodbye’ then ready=off
.
.
.
endtxt
@endprogram

2. You want to generate IF statements using the @GENERATE STL statement and
need to reserve one or more IF numbers for your own use.
@ifnum = 11

proc1: msgtxt
/***/
/* Set aside IF numbers 0-10 for use in */
/* code created by using @GENERATE */
/* statements. */
/***/
/* Generate special IFs. */
@generate
"0 IF WHEN=IN,LOC=RH+0,TEXT=’80’,THEN=B-RESP,STATUS=HOLD"
.
.
.
"10 IF WHEN=IN,LOC=B+0,TEXT=(REPLY 1),THEN=CONT"
@endgenerate
.
.
.
endtxt

3. You exceeded the number of IFs and can reuse earlier IF numbers. You must be
very careful when doing this to ensure that you do not override something you
still need.

@INCLUDE

@INCLUDE member_name

358 WSim Script Guide and Reference

Where

member_name is the name of a member of the partitioned data set specified by the
SYSLIB DD statement. It is subject to the following limitations:
v Can include these characters: uppercase and lowercase alphanumeric characters

and the special characters $, @, _ (underscore), ?, and #
v Cannot begin with a number
v Must be from 1 to 8 characters long.

Function

The @INCLUDE statement retrieves the member_name from the data set specified
by the SYSLIB DD statement and processes the contents of the member as if it
were actually coded in the STL input data set at the point where the @INCLUDE
statement is coded. The lines in the include member are processed as if they were
actually “included” in the STL input data set.

An included member can itself contain @INCLUDE statements referencing other
members; however, members may not be included recursively.

The statements contained in an include member must be complete STL statements.
If all records of an included member have been read and continuation is expected,
an error will be flagged. Other structures (such as networks, do-end groups, and
procedures) can cross boundaries of included members as desired.

This statement may be coded anywhere in the STL input data set. However, when
coded, it must be the last statement on the line and be followed only by STL
comments.

If this statement is coded between @NETWORK and @ENDNETWORK statements,
it must begin in the first position of the line, must otherwise be coded with the
syntax of a normal STL statement, and must be complete on the line.

Examples
---> STL input data set

/***/
/* PROGRAM: MYTEST */
/* DATE: 06/20/2002 */
@include header /* Include my unique comment block */
/***/
mytest: msgtxt
&#8942;
endtxt

---> HEADER member from include data set. This member would
---> allow the user to include a common block of comments
---> in all of their input data sets.

/* USER: JOHN DOE */
/* TEST: REGRESSION 45 */
/* . */
/* . */
/* . */

Chapter 25. Reference to STL statements 359

@NETWORK

@NETWORK
WSim_statements
@ENDNETWORK

Where

WSim_statements are all statements acceptable by the Preprocessor. These include
network definition and message generation statements.

Function

The @NETWORK and @ENDNETWORK control statements let you include
network definition statements in the same data set with your STL programs. When
the STL Translator encounters an @NETWORK statement, it assumes that the
following statements are in the scripting language, until the STL Translator
encounters the @ENDNETWORK statement. After the translator completes
processing all the STL statements, it calls the Preprocessor to verify all the
statements found between the @NETWORK and @ENDNETWORK statements. You
can specify the NOPREP execution parameter to suppress preprocessing of the
network, or NOTRAN to suppress translation of the STL statements.

See “Including network definition statements in STL” on page 325 for more
information.

Examples
/* My STL Data Set */

/* Network Definition */
@network
netx Ntwrk uti=100,delay=f2,stltrace=yes,mlog=yes
apath Path amsgWSim
1 Vtamappl bufsize=3000
* LU DefinitionWSim
1lu Lu lutype=lu2,display=(24,80),init=sec,path=(apath)
@endnetwork

/* STL Program */
@program
integer i
string c
amsg: msgtxt

do i=1 to 5
c = char(i)
say ’Message Number’ c
end
opcmnd ’zend’
quiesce
endtxt

@endprogram

Notes
v The network definition must be placed at the top of the STL input data set. Only

comments can come before it.
v The @ENDNETWORK statement must begin in column one.

360 WSim Script Guide and Reference

v The statements must be coded exactly as you run the Preprocessor against the
data set directly. For example, labels must begin in column 1.

v You must code at least one NTWRK or PREP statement in your network
definition. Multiple networks may also be defined.

v STL comments may not be coded within the network definition. Only WSim
comments are acceptable.

v The @NETWORK and @ENDNETWORK statements can be abbreviated @NET
and @ENDNET.

v Only comments may be coded on the same line after the @NETWORK
statement.

@PROGRAM

@PROGRAM[=program_name]
STL_statements
@ENDPROGRAM

Where

program_name is a 1- to 8-character alphanumeric name that conforms to STL
variable naming conventions.

Function

The @PROGRAM control statement specifies the start of an STL program. If you
code “=program_name”, the STL trace facility stores trace information for the
program under this name. See “Obtaining STL trace records” on page 341 for more
information about the STL trace facility.

To code multiple programs in one STL input data set, you need the
@ENDPROGRAM control statement. You must start each program in the input
data set with an @PROGRAM statement and end each program with an
@ENDPROGRAM statement. You can only code comments between programs.
Defining multiple STL programs lets you reuse variable, constant and label names.
(This does not include procedure, user table, or program names.)

For more information on using the @PROGRAM and @ENDPROGRAM statements
to code multiple STL programs, see “Coding multiple programs in one STL input
data set” on page 326.

Examples
/***/
/* */
/* This program will be known as AMSGPROG. */
/* */
/***/
@program = amsgprog
integer i /* The variable i is an integer

in this program. */
amsg: msgtxt

do i = 1 to 5
c = char(i)
type ’Message Number’ c
transmit

Chapter 25. Reference to STL statements 361

end
endtxt

@endprogram /* Specifies the end of AMSGPROG. */
/***/
/* */
/* This new program is unnamed. */
/* Therefore, STL trace information is not */
/* available for this program. Also, STL */
/* statement numbers are not displayed */
/* when using the Q (Query) operator */
/* command. */
/* */
/***/
@program
string i /* The variable i is a string in

this program. */
bmsg: msgtxt

i = ’some text’
type i
transmit
endtxt

@endprogram /* Specifies the end of the
previous program. */

/***/
/* */
/* This program will be known as CMSGPROG. */
/* */
/***/
@program = cmsgprog
cmsg: msgtxt

opcmnd ’zend’
quiesce
endtxt

/* The @endprogram statement is
optional for the last program. */

Notes
v The @PROGRAM statement, if coded, must be the first statement in a program.

It must be placed before all the declarations and procedures that make up the
program. The @ENDPROGRAM statement, if coded, must be the last statement
in a program. No STL statements may follow it unless another @PROGRAM
statement is coded. Neither the @PROGRAM statement nor the
@ENDPROGRAM statement is valid within a procedure or user table.

v The @ENDPROGRAM statement is not required if the STL input data set
contains only one program. If multiple programs are coded, it is also optional
for the last program.

v You can specify a program name using the PROGRAM execution parameter.
This overrides any name that was coded in an @PROGRAM statement for the
first program defined in your STL input data set.

v Program names cannot be the same as names declared for other programs,
procedures, or user tables.

v You cannot code STL statements after the @ENDPROGRAM statement on the
same line. However, comments are valid.

ABORT

ABORT

362 WSim Script Guide and Reference

Function

The ABORT statement is an asynchronous subset statement. You can use the
ABORT statement to terminate the current STL program immediately. All
outstanding asynchronous conditions will be deactivated and the next program
specified for this terminal (on the PATH network definition statement) will begin
executing when the current intermessage delay expires.

Examples
onin index(ru,’UNRECOVERABLE ERROR’) > 0 then abort

/* Abort this program */
/* if an unrecoverable */
/* error ever occurs. */

Notes
v This statement must be coded directly following the THEN keyword on the

ONIN, ONOUT, or ON SIGNALED statement.
v You could use ABORT to handle the unexpected loss of a terminal session.

ALLOCATE

ALLOCATE variable_name {counter}
{save area}
{switch}

Where

variable_name is any valid STL variable name not previously declared.

counter is a counter name, for example, DC1 (for device counter 1) or NC25 (for
network counter 25). You can code values in the ranges DC1-DC4095 and
NC1-NC4095. (You can also code line-level, terminal-level, and sequence counters.
See Note 4 on page 364.)

save area is a save area name, for example, 1 (for device save area 1) or N140 (for
network save area 140). You can code values in the ranges 1-4095 and N1-N4095.

switch is a switch name, for example, SW1 (for device switch 1) or NSW8 (for
network switch 8). You can code values in the ranges SW1-SW4095, NSW1-NSW31,
and NSW33-NSW4095. STL reserves NSW32 for internal use. (You can also specify
terminal-level switches. See Note 4 on page 364.)

All counter, save area, or switch names must be enclosed in single or double
quotation marks.

Function

The ALLOCATE statement allows the STL programmer to specify which resource
is to be used to represent a variable. If the ALLOCATE statement is not used, the
STL Translator performs this variable-to-resource mapping automatically when a
variable is declared.

Chapter 25. Reference to STL statements 363

Examples
allocate mydata ’1’ /* Use device save area 1 to hold "mydata". */
allocate mycount ’DC1’ /* Use device counter 1 to hold "mycount". */
allocate netflag ’NSW1’ /* Use network switch 1 to hold "netflag". */

Notes
1. The ALLOCATE statement is a declarative statement. You can code it only

outside an STL procedure.
2. If you use ALLOCATE statements, code them before all other declarative

statements and before the first procedure in an STL program. This coding order
is necessary to ensure that the resources are allocated properly.

3. The ALLOCATE statement should be necessary under only two conditions:
v When you must coordinate separately translated STL programs. You can

obtain the variable-to-resource mappings for a translated STL program from
the variable dictionary included in the printed listing from the STL
Translator.

v When counters and switches unknown to the STL Translator are required.
These include line-level and terminal-level counters, sequence counters, and
terminal switches. For example:
allocate line_count ’LC2’ /* Use line counter 2 to hold */

/* "line_count". */

allocate group_flag ’TSW18’ /* Use terminal switch 18 to */
/* hold "group_flag". */

allocate net_sequence ’NSEQ’ /* Use the network sequence counter */
/* (NSEQ) to hold the variable */
/* "net_sequence". */

4. STL does not automatically keep track of line-level and terminal-level counters,
terminal-level switches, and sequence counters. Therefore, you can declare
multiple STL variables that are mapped to the same resources.

5. Be sure that the CNTRS operand is not coded in your network definition. This
operand can cause problems when using STL programs.

BIT

BIT [{SHARED|UNSHARED}] variable_list

Where

variable_list is any number of valid STL variable names not previously declared,
separated by commas.

Function

The BIT statement explicitly declares one or more BIT variables, which can be
specified as SHARED or UNSHARED. The default class is UNSHARED.

Examples
/* Declares the unshared bit variables, */
/* "found_it" and "data_received". */

bit unshared found_it, data_received

364 WSim Script Guide and Reference

bit myflag /* Declares the unshared bit variable, "myflag". */
bit shared netflag /* Declares the shared bit variable, "netflag". */

Note

The BIT statement is a declarative statement. You can code it only outside an STL
procedure.

BTAB

BTAB

Function

The BTAB statement simulates the Back Tab key on a display terminal. The Back
Tab key moves the cursor to the beginning of the preceding input field on the
simulated panel if the cursor is currently positioned at the first character position
in a field. If the cursor is currently positioned in an input field but not at the first
character, the Back Tab key moves the cursor to the beginning of the current input
field. This statement is valid for simulation of 3270 terminals only.

Examples
cursor(index(screen,’MYFILE’)) /* Position cursor on MYFILE. */
btab /* Back up to the input field */

/* before MYFILE. */

CALL

CALL procedure_name

Where

procedure_name is the name of an STL procedure.

Function

The CALL statement passes control to the named STL procedure. All currently
active ONIN, ONOUT, and ON SIGNALED conditions in the calling procedure
remain active. When control returns from the called procedure (as a result of a
RETURN or ENDTXT statement), execution of the calling procedure continues with
the statement following the CALL.

Note: If this is coded as an asynchronous subset statement, the CALL will reset the
WAIT condition of your simulated terminal, causing any outstanding WAIT
conditions to be satisfied.

Examples
call editproc /* Call the procedure that edits a file. */

Chapter 25. Reference to STL statements 365

Notes
v All STL variables are global in scope; therefore, their values are available to all

procedures in a program. Thus, a variable's value may not be the same after the
return from a called procedure because the called procedure may have modified
the variable. For instance, in the example below, the SAY statement in “proc1”
writes a “2” to the operator since “proc2” has modified the value of “a”.
proc1: msgtxt
a = 1
call proc2
say char(a)
endtxt

proc2: msgtxt
a = 2
endtxt

v You can make recursive calls (calls to the currently active STL procedure).
v WSim limits the number of outstanding CALLs permitted for a terminal. The

MAXCALL operand on the DEV, TP, or LU statements specifies this limit. If you
do not code MAXCALL, WSim uses the default limit of five. See Part 1, “WSim
language statements,” on page 1 for more information about the MAXCALL
operand.

v When coded as an asynchronous subset statement, this statement must be coded
directly following the THEN keyword on the ONIN, ONOUT, or ON
SIGNALED statement.

CANCEL

CANCEL {event_tag}
{DELAY}
{SUSPEND}

Where

event_tag is a string expression that specifies the “tag” value assigned to a POST,
QSIGNAL, RESET, or SIGNAL statement. If the event_tag is a string constant
expression, it must be 1 to 8 alphanumeric characters and enclosed in single or
double quotes. (Strings containing hexadecimal constants are exempt from this
restriction.) If you specify a nonconstant string expression, the first 8 characters of
the string are used. If the string is shorter than 8 characters, the available
characters are used. To satisfy conditions using event names, the first 8 characters
must match exactly. If you specify a string variable, it cannot be the name of one of
the reserved variables (for example, BUFFER).

Function

When you use the DELAY or SUSPEND arguments, the CANCEL statement is an
asynchronous subset statement. When encountered on an ONIN, ONOUT, or ON
SIGNALED statement, CANCEL causes the current delay between messages or the
current suspension interval to be canceled.

The STL Translator handles CANCEL DELAY and CANCEL SUSPEND identically.
Therefore, either asynchronous subset statement will cancel the current delay

366 WSim Script Guide and Reference

interval, if one is in effect, or will cancel the current suspension interval, if one is
in effect, regardless of which argument you specify.

This statement also enables you to cancel an action specified by a POST,
QSIGNAL, RESET, or SIGNAL statement if a time interval was specified and the
interval has not expired. The event can only be canceled by the same resource that
established the event. For example, if terminal A signals an event, terminal B
cannot cancel the signal. Only terminal A can cancel it.

Examples

The following example shows how to cancel a DELAY statement.
mainproc: msgtxt
onin index(ru,’More...’) > 0 then cancel delay

/* Don’t delay if screen needs */
/* to be cleared. */

type ’LISTFILE * * *’ /* List all files. */
delay(40) /* Delay 40 seconds after */

/* next message is sent. */
transmit
do while index(screen,’More...’) > 0 /* Keep clearing screen */

/* as needed. */
delay(40) /* Reestablish 40-second */

/* delay. */
transmit using pa2 /* Clear screen. */
end
&#8942;
endtxt /* End of Mainproc. */

The following example shows how to cancel a SUSPEND statement.
sleep: msgtxt /* Go to sleep for one hour or until */

/* ’Hello’ is received. */
onin index(ru,’Hello’) > 0 then cancel suspend

/* Wake up when ’Hello’ is received. */
suspend(3600) /* Sleep for 1 hour (3600 seconds). */
endtxt /* End of sleep. */

The following examples show how to cancel events.
signal ’SNOWFALL’ after 5 /* Signal the event snowfall */

/* after 5 seconds have elapsed. */
/* The event tag defaults to the */
/* event name, SNOWFALL, since */
/* no event tag was specified. */

&#8942;
cancel ’SNOWFALL’ /* Cancels the event snowfall */

/* if 5 seconds have not elapsed. */

weather = ’ALL’ /* Assign ALL to this variable. */
post ’RAIN’ after 10 tag weather /* Set up each of these events. */
reset ’SNOW’ after 20 /* For the POST and SIGNAL */
signal ’SLEET’ after 30 tag weather /* events, assign an event tag */

/* equal to the value of the */
/* variable "weather". */

&#8942;
cancel weather /* Cancels all events with the */

/* tag ALL provided the specified */
/* time has not expired; the */
/* RESET event is not canceled */
/* because ALL does not match the */
/* defaulted event tag SNOW for */
/* this event. */

Chapter 25. Reference to STL statements 367

Note

When coded as an asynchronous subset statement (CANCEL DELAY or CANCEL
SUSPEND), this statement must be coded directly following the THEN keyword
on the ONIN, ONOUT, or ON SIGNALED statement.

CHARSET

CHARSET character_set

Where

character_set is a string constant from the following list: APL, FIELD, PSA, PSB,
PSC, PSD, PSE, PSF, or 'yy'x (where yy is 2 hexadecimal digits with a value of "40"x
through "EF"x). You can use uppercase or lowercase letters. You must enclose the
string constant in single or double quotation marks.

Function

The CHARSET statement simulates the action of the 3270 terminal key that selects
the character set for subsequent data input. The statement is valid for simulation of
these terminals only.

If you do not use the CHARSET statement, the character set will be determined by
the extended field attribute byte value.

You can choose one of the following character sets:

APL Selects the special APL/Text character set for APL characters,
which must be sent using the 2-character graphic escape sequence.

FIELD Specifies that the character set is determined by the extended field
attribute byte. Use the FIELD character set identifier to return to
the standard EBCDIC character set after an APL selection.

PSA Selects the first Programmed Symbols (PS) character set defined for
the terminal.

PSB Selects the second PS.

PSC Selects the third PS.

PSD Selects the fourth PS.

PSE Selects the fifth PS.

PSF Selects the sixth PS.

'yy'x Selects the Programmed Symbols character set named by the value
for yy, where yy is a 2-digit hexadecimal string constant that has a
value of "40"x through "EF"x.

Examples
charset ’apl’ /* Select the APL character set. */
charset ’45’x /* Select PS character set named ’45’x. */

368 WSim Script Guide and Reference

CMACCP — Accept_Conversation

CMACCP (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character output) is the conversation identifier assigned to the
conversation. CPI Communications supplies and maintains the conversation_ID.
When the return_code is set equal to CM_OK, the value returned in this parameter
is used by the program on all subsequent statements issued for this conversation.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. log_byte is
also associated with the FMH-5 data received when a CMACCP successfully
completes. The log_byte remains active until another CPI-C statement is issued.
This byte gives users of the Response Time Utility a way to identify transactions
from transmitted or received data when gathering statistics by the various
user-defined “log_byte” categories. Only the first character or first two
hexadecimal digits of the string expression are used. The default log_byte is X'00'.

Function

A program uses the CMACCP statement to simulate the CPI-C CMACCP call,
which is usedto accept an incoming conversation. Like CMINIT, the
CMACCPstatement initializes values for various conversation characteristics. The
difference between the two statements is that the program that will later allocate
the conversation issues the CMINIT statement, and the partner program that will
accept the conversation after it is allocated issues the CMACCP statement.

For more information on CMACCP and its parameters, refer to the
Accept_Conversation (CMACCP) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMALLC — Allocate

CMALLC (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) is the conversation identifier of a conversation
that has been initialized with a CMINIT statement.

return_code (numeric output) specifies the result of the statement execution.

Chapter 25. Reference to STL statements 369

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. log_byte is
also associated with the FMH-5 data transmitted when a CMALLC successfully
completes. The log_byte remains active until another CPI-C statement is issued.
This byte gives users of the Response Time Utility a way to identify transactions
from transmitted or received data when gathering statistics by the various
user-defined “log_byte” categories. Only the first character or first two
hexadecimal digits of the string expression are used. The default log_byte is X'00'.

Function

A program uses the CMALLC statement to simulate the CPI-C CMALLC call,
which is used to start a conversation with its partner program.

Before issuing the CMALLC statement, a program has the option of issuing one or
more of the following statements to set allocation parameters:

CMSCT — Set_Conversation_Type
CMSMN — Set_Mode_Name
CMSPLN — Set_Partner_LU_Name
CMSRC — Set_Return_Code
CMSSL — Set_Sync_Level
CMSTPN — Set_TP_Name

For more information on CMALLC and its parameters, refer to the Allocate
(CMALLC) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMCFM — Confirm

CMCFM (conversation_ID, request_to_send_received, return_code)
[LOGGING log_byte]

Where

conversation_ID (character input) is the conversation identifier.

request_to_send_received (numeric_output) specifies the variable containing an
indication of whether the remote program issued a CMRTS statement.

Note: If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in request_to_send_received is
meaningless.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

370 WSim Script Guide and Reference

Function

A local program uses the CMCFM statement to simulate the CPI-C CMCFM call,
which is used to send a confirmation request to the remote program and then wait
for a reply. The remote program replies with a CMCFMD statement. The local and
remote programs use the CMCFM and CMCFMD statements to synchronize their
processing of the data.

Note: The sync_level conversation characteristic for the conversation_ID specified
must be set to CM_CONFIRM to use this statement. Use the CMSSL
(Set_Sync_Level) statement to set the conversation's synchronization level.

For more information on CMCFM and its parameters, refer to the Confirm
(CMCFM) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMCFMD — Confirmed

CMCFMD (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier for the
conversation on which CMCFM has been received.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMCFMD statement to simulate the CPI-C CMCFMD call,
which is usedto send a confirmation reply to the remote program. The local and
remote programs can use the CMCFM and CMCFMD to synchronize their
processing.

For more information on CMCFMD and its parameters, refer to the Confirmed
(CMCFMD) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

Chapter 25. Reference to STL statements 371

CMDEAL — Deallocate

CMDEAL (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the
conversation to be deallocated.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMDEAL statement to simulate the CPI-C CMDEAL call,
which is used to end a conversation. The CMDEAL statement can include the
function of the CMFLUS or CMCFM statement, depending on the value of the
deallocate_type conversation characteristic. The conversation_ID is no longer assigned
when the conversation is deallocated as part of this statement.

Before issuing the CMDEAL statement, a program has the option of issuing one or
both of the following statements to set deallocation parameters:

CMSDT — Set_Deallocate_Type
CMSLD — Set_Log_Data

For more information on CMDEAL and its parameters, refer to the Deallocate
(CMDEAL) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMECS — Extract_Conversation_State

CMECS (conversation_ID, conversation_state, return_code)
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

conversation_state (numeric output) specifies the conversation state that is returned
to the local program. The conversation_state can be one of the following:

CM_INITIALIZE_STATE

372 WSim Script Guide and Reference

CM_SEND_STATE
CM_RECEIVE_STATE
CM_SEND_PENDING_STATE
CM_CONFIRM_STATE
CM_CONFIRM_SEND_STATE
CM_CONFIRM_DEALLOCATE_STATE

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMECS statement to simulate the CPI-C CMECS call, which is
usedto extract the conversation state for a given conversation. The value is
returned in the conversation_state parameter.

For more information on CMECS and its parameters, refer to the
Extract_Conversation_State (CMECS) call description in the “Call Reference”
chapter of Systems Application Architecture Common Programming Interface
Communications Reference.

CMECT — Extract_Conversation_Type

CMECT (conversation_ID, conversation_type, return_code)
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

conversation_type (numeric output) specifies the conversation type that is returned
to the local program. The conversation_type can be one of the following:

CM_BASIC_CONVERSATION
CM_MAPPED_CONVERSATION

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Chapter 25. Reference to STL statements 373

Function

A program uses the CMECT statement to simulate the CPI-C CMECT call, which is
used to extract the conversation_type characteristic's value for a given conversation.
The value is returned in the conversation_type parameter.

For more information on CMECT and its parameters, refer to the
Extract_Conversation_Type (CMECT) call description in the “Call Reference”
chapter of Systems Application Architecture Common Programming Interface
Communications Reference.

CMEMN — Extract_Mode_Name

CMEMN (conversation_ID, mode_name, mode_name_length, return_code),
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

mode_name (character output) specifies the variable containing the mode name. The
mode name designates the network properties for the session allocated, or to be
allocated, which will carry the conversation specified by the conversation_ID.

mode_name_length (numeric output) specifies the variable containing the length of
the returned mode_name parameter.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMEMN statement to simulate the CPI-C CMEMN call, which
is usedto extract the mode_name and mode_name_lengthcharacteristics' values for a
given conversation. The values are returned in the mode_name and
mode_name_lengthparameters.

For more information on CMEMN and its parameters, refer to the
Extract_Mode_Name (CMEMN) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

374 WSim Script Guide and Reference

CMEPLN — Extract_Partner_LU_Name

CMEPLN (conversation_ID, partner_LU_name, partner_LU_name_length,,return_code)
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

partner_LU_name (character output) specifies the variable containing the name of
the LU where the remote program is located.

partner_LU_name_length (numeric output) specifies the variable containing the
length of the returned partner_LU_name parameter.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMEPLN statement to simulate the CPI-C CMEPLN call,
which is usedto extract the partner_LU_name and
partner_LU_name_lengthcharacteristics' values for a given conversation. The values
are returned in the partner_LU_name and partner_LU_name_lengthparameters.

For more information on CMEPLN and its parameters, refer to the
Extract_Partner_LU_Name (CMEPLN) call description in the “Call Reference”
chapter of Systems Application Architecture Common Programming Interface
Communications Reference.

CMESL — Extract_Sync_Level

CMESL (conversation_ID, sync_level, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

sync_level (numeric output) specifies the variable containing the sync_level
characteristic of the conversation. The sync_level variable can have one of the
following values:

CM_NONE
CM_CONFIRM

Chapter 25. Reference to STL statements 375

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMESL statement to simulate the CPI-C CMESL call, which is
usedto extract the sync_level characteristic's value for a given conversation. The
value is returned in the sync_level parameter.

For more information on CMESL and its parameters, refer to the
Extract_Sync_Level (CMESL) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMFLUS — Flush

CMFLUS (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMFLUS statement to simulate the CPI-C CMFLUS call, which
is usedto empty the local logical unit's send buffer for a given conversation. When
notified by CPI Communications that a CMFLUS has been issued, the LU sends
any information it has buffered to the remote LU. The information that can be
buffered comes from the CMALLC, CMSEND, or CMSERR statement. For more
details of when and how buffering occurs, refer to the call descriptions of those
calls in the “Call Reference” chapter of Systems Application Architecture Common
Programming Interface Communications Reference.

Also, for more information on CMFLUS and its parameters, refer to the Flush
(CMFLUS) call description in the “Call Reference” chapter of Systems Application

376 WSim Script Guide and Reference

Architecture Common Programming Interface Communications Reference.

CMINIT — Initialize_Conversation

CMINIT (conversation_ID, sym_dest_name, return_code) [LOGGING log_byte]

Where

conversation_ID (character output) specifies the conversation identifier assigned to
the conversation. CPI Communications supplies and maintains the conversation_ID.
If the CMINIT statement is successful (return_code is set to CM_OK), the local
program uses the identifier returned in this variable for the rest of the
conversation.

sym_dest_name (character input) specifies the symbolic destination name. The
symbolic destination name is provided by the program and points to an entry in
the side information table.7 The appropriate entry in the side information is
retrieved and used to initialize the conversation's characteristics (such as partner
LU name, partner TP name, and mode name to be used for the session).
Alternatively, a blank sym_dest_name (one composed of eight space characters) may
be specified. When this is done, the program is responsible for setting up the
appropriate destination information, using Set statements, before issuing the
CMALLC statement for this conversation.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMINIT statement to simulate the CPI-C CMINIT call, which
is used to initialize values for various conversation characteristics before the
conversation is allocated (by a CMALLC statement). The remote partner program
uses the CMACCP statement to initialize values for the conversation characteristics
on its end of the conversation.

A program can override the values that are initialized by this statement using the
appropriate Set statements, such as CMSSL to set the synchronization level. Once
the value is changed, it remains changed until the end of the conversation or until
changed again by a Set statement.

For more information on CMINIT and its parameters, refer to the
Initialize_Conversation (CMINIT) call description in the “Call Reference” chapter

7. You can find a discussion of the side information table in the “Simulating CPI-C Transaction Programs” chapter of Creating WSim
Scripts. Further, you can find descriptions of the SIDEINFO operand of the APPCLU statement, and of the SIDEENT, SIDEINFO,
and SIDEEND statements that make up the SIDEINFO group, in Part 1, “WSim language statements,” on page 1.

Chapter 25. Reference to STL statements 377

of Systems Application Architecture Common Programming Interface Communications
Reference.

CMPTR — Prepare_To_Receive

CMPTR (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMPTR statement to simulate the CPI-C CMPTR call, which is
used to change the conversation from Send to Receive state in preparation for
receiving data. The change to Receive state can be either completed as part of this
statement or deferred until the program issues a CMFLUS or CMCFM statement.
When the change to Receive state is completed as part of this statement, it may
include the function of the CMFLUS or CMCFM statement. This statement's
function is determined by the value of the prepare_to_receive_type conversation
characteristic. See “CMSPTR — Set_Prepare_To_Receive_Type” on page 390 for
more information about the prepare_to_receive_type conversation characteristic.

Before issuing the CMPTR statement, a program has the option of issuing the
following statement which affects the function of the CMPTR statement:

CMSPTR — Set_Prepare_To_Receive_Type

For more information on CMPTR and its parameters, refer to the
Prepare_To_Receive (CMPTR) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMRCV — Receive

CMRCV (conversation_ID, receive_buffer, requested_length, data_received,,
received_length, status_received, request_to_send_received,,
return_code) [LOGGING log_byte]

378 WSim Script Guide and Reference

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

receive_buffer (character output) specifies the variable in which the program is to
receive data. This parameter contains data only if return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL and data_received is not set to
CM_NO_DATA_RECEIVED.

requested_length (numeric input) specifies the maximum amount of data the
program is to receive. Valid requested_length values range from 0 to 32767.

data_received (numeric output) specifies whether the program received data. Unless
return_code is set to CM_OK or CM_DEALLOCATED_NORMAL, the value
contained in data_received is meaningless. The data_received variable can have one of
the following values:

CM_NO_DATA_RECEIVED (basic and mapped conversations)
CM_DATA_RECEIVED (basic conversations only)
CM_COMPLETE_DATA_RECEIVED (basic and mapped conversations)
CM_INCOMPLETE_DATA_RECEIVED (basic and mapped conversations)

received_length (numeric output) specifies the variable containing the amount of
data the program received, up to the maximum. If the program does not receive
data on this statement, the value contained in received_length is meaningless.

status_received (numeric output) specifies the variable containing an indication of
the conversation status. The status_received variable can have one of the following
values:

CM_NO_STATUS_RECEIVED
CM_SEND_RECEIVED
CM_CONFIRM_RECEIVED
CM_CONFIRM_SEND_RECEIVED
CM_CONFIRM_DEALLOC_RECEIVED

request_to_send_received (numeric_output) specifies the variable containing an
indication of whether the remote program issued a CMRTS statement. If
return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in request_to_send_received is
meaningless. The request_to_send_received variable can have one of the following
values:

CM_REQ_TO_SEND_RECEIVED
CM_REQ_TO_SEND_NOT_RECEIVED

return_code (numeric output) specifies the result of the statement execution. The
return codes that can be returned depend on the state and characteristics of the
conversation at the time this statement is issued.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. log_byte is
also associated with the data which may be received when a CMRCV successfully
completes. The log_byte remains active until another CPI-C statement is issued.
This byte gives users of the Response Time Utility a way to identify transactions

Chapter 25. Reference to STL statements 379

from transmitted or received data when gathering statistics by the various
user-defined “log_byte” categories. Only the first character or first two
hexadecimal digits of the string expression are used. The default log_byte is X'00'.

Function

A program uses the CMRCV statement to simulate the CPI-C CMRCV call, which
is used to receive information from a given conversation. The information received
can be a data record (on a mapped conversation), data (on a basic conversation),
conversation status, or a request for confirmation.

Before issuing the CMRCV statement, a program has the option of issuing one or
both of the following statements which affect the function of the CMRCV
Statement:

CMSF — Set_Fill
CMSRT — Set_Receive_Type

For more information on CMRCV and its parameters, refer to the Receive
(CMRCV) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMRTS — Request_To_Send

CMRTS (conversation_ID, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A local program uses the CMRTS statement to simulate the CPI-C CMRTS call,
which is used to notify the remote program that the local program would like to
enter Send state for a given conversation.

For more information on CMRTS and its parameters, refer to the Request_To_Send
(CMRTS) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

380 WSim Script Guide and Reference

CMSCT — Set_Conversation_Type

CMSCT (conversation_ID, conversation_type, return_code)
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

conversation_type (numeric input) specifies the type of conversation to be allocated
when CMALLC is issued. The conversation_type variable can have one of the
following values:

CM_BASIC_CONVERSATION
CM_MAPPED_CONVERSATION

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSCT statement to simulate the CPI-C CMSCT call, which is
used to set the conversation_type characteristic for a given conversation. The
CMSCT statement overrides the value assigned when the CMINIT statement was
issued.

Note: The CMSCT statement can be issued only after the CMINIT for the
conversation has completed, and before the CMALLC is issued.

For more information on CMSCT and its parameters, refer to the
Set_Conversation_Type (CMSCT) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMSDT — Set_Deallocate_Type

CMSDT (conversation_ID, deallocate_type, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

Chapter 25. Reference to STL statements 381

deallocate_type (numeric input) specifies the type of deallocation to be performed.
The deallocate_type variable can have one of the following values:

CM_DEALLOCATE_SYNC_LEVEL
CM_DEALLOCATE_FLUSH
CM_DEALLOCATE_CONFIRM
CM_DEALLOCATE_ABEND

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSDT statement to simulate the CPI-C CMSDT call, which is
usedto set the deallocate_type characteristic for a given conversation. The CMSDT
statement overrides the value assigned when the CMINIT or CMACCP statement
was issued.

For more information on CMSDT and its parameters, refer to the
Set_Deallocate_Type (CMSDT) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMSED — Set_Error_Direction

CMSED (conversation_ID, error_direction, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

error_direction (numeric input) specifies the direction of the data flow in which the
program detected an error. The parameter is significant only if CMSERR is issued
in the Send_Pending state (that is, immediately after a CMRCV on which both
data and a conversation status of CM_SEND_RECEIVED are received). Otherwise,
the error_direction value is ignored when the program issues CMSERR.

The error_direction variable can have one of the following values:
CM_RECEIVE_ERROR
CM_SEND_ERROR

return_code (numeric output) specifies the result of the statement execution.

382 WSim Script Guide and Reference

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSED statement to simulate the CPI-C CMSED call, which is
usedto set the error_direction characteristic for a given conversation. The CMSED
statementoverrides the value assigned when the CMINIT or CMACCP statement
was issued.

For more information on CMSED and its parameters, refer to the
Set_Error_Direction (CMSED) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMSEND — Send_Data

CMSEND (conversation_ID, send_buffer, send_length,,
request_to_send_received, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

send_buffer (character input) specifies the information to be sent. The form of the
information depends on the conversation type.

For a basic conversation, send_buffer specifies the data to be sent. The data
consists of logical records, each containing a 2-byte length field followed by the
data field. The length of the data field can range from 0 to 32765 bytes. The
length of the record equals the length of the data field plus the 2-byte length
field.
For a mapped conversation, send_buffer specifies the data record to be sent. The
length of the data record is given by the send_length parameter.

send_length (numeric input) specifies the size of the send_buffer parameter and the
number of bytes to be sent on the conversation. The meaning of send_length
depends on the conversation type:

For basic conversations, the send_length ranges in value from 0 to 32767. When
a program issues a CMSEND statement during a basic conversation, send_length
specifies the size of the send_buffer parameter and is not related to the length of
a logical record.
For mapped conversations, the send_length ranges in value from 0 to 32763.
When a program issues a CMSEND statement during a mapped conversation,
send_length specifies the length of a data record.

Chapter 25. Reference to STL statements 383

request_to_send_received (numeric output) specifies the variable containing an
indication of whether or not a request-to-send notification has been received. The
request_to_send_received variable can have one of the following values:

CM_REQ_TO_SEND_RECEIVED
CM_REQ_TO_SEND_NOT_RECEIVED

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. log_byte is
also associated with the data which may be transmitted when a CMSEND
successfully completes. The log_byte remains active until another CPI-C statement
is issued. This byte gives users of the Response Time Utility a way to identify
transactions from transmitted or received data when gathering statistics by the
various user-defined “log_byte” categories. Only the first character or first two
hexadecimal digits of the string expression are used. The default log_byte is X'00'.

Function

A local program uses the CMSEND statement to simulate the CPI-C CMSEND call,
which is used to send data to the remote program.

When issued during a mapped conversation, the CMSEND statement sends one
data record to the remote program. The data record consists entirely of data and is
not examined by the LU for possible logical records.

When issued during a basic conversation, this statement sends data to the remote
program. The data consists of logical records. The amount of data is specified
independently of the data format.

Before issuing the CMSEND statement, a program has the option of issuing one or
more of the following statements which affect the function of the CMSEND
statement:

CMSST — Set_Send_Type
If send_type = CM_SEND_AND_PREP_TO_RECEIVE, optional setup may
include: CMSPTR — Set_Prepare_To_Receive_Type
If send_type = CM_SEND_AND_DEALLOCATE, optional setup may include:
CMSDT — Set_Deallocate_Type

For more information on CMSEND and its parameters, refer to the Send_Data
(CMSEND) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSERR — Send_Error

CMSERR (conversation_ID, request_to_send_received, return_code),
[LOGGING log_byte]

384 WSim Script Guide and Reference

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

request_to_send_received (numeric output) specifies the variable containing an
indication of whether or not a request-to-send notification has been received. The
request_to_send_received variable can have one of the following values:

CM_REQ_TO_SEND_RECEIVED
CM_REQ_TO_SEND_NOT_RECEIVED

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. log_byte is
also associated with the error log_data which may be transmitted when a CMSERR
successfully completes. The log_byte remains active until another CPI-C statement
is issued. This byte gives users of the Response Time Utility a way to identify
transactions from transmitted or received data when gathering statistics by the
various user-defined “log_byte” categories. Only the first character or first two
hexadecimal digits of the string expression are used. The default log_byte is X'00'.

Function

A local program uses the CMSERR statement to simulate the CPI-C CMSERR call,
which is used to inform the remote program that the local program detected an
error during the conversation. If the conversation is in Send state, the CMSERR
statement forces the LU to flush its send buffer.

When this call completes successfully, the local program's end of the conversation
is in Send state and the remote program's end is in Receive state. Further action is
defined by program logic.

Beforeissuing the CMSERR statement, a program has the option of issuing one or
more of the following statements which affect the function of the CMSERR
statement:

CMSED — Set_Error_Direction
CMSLD — Set_Log_Data

For more information on CMSERR and its parameters, refer to the Send_Error
(CMSERR) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSF — Set_Fill

CMSF (conversation_ID, fill, return_code) [LOGGING log_byte]

Chapter 25. Reference to STL statements 385

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

fill (numeric input) specifies whether the program is to receive data in terms of the
logical-record format of the data or independent of the logical-record format. The
fill variable can have one of the following values:

CM_FILL_LL
CM_FILL_BUFFER

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSF statement to simulate the CPI-C CMSF call, which is
used to set the fill characteristic for a given conversation. The CMSF statement
overrides the value that was assigned when the CMINIT or CMACCP statement
was issued.

Note: This statement applies only to basic conversations. The fill characteristic is
ignored for mapped conversations.

For more information on CMSF and its parameters, refer to the Set_Fill (CMSF) call
description in the “Call Reference” chapter of Systems Application Architecture
Common Programming Interface Communications Reference.

CMSFM5 — Set_FM_Header_5_Extension

CMSFM5 (conversation_ID, FMH5_extension, FMH5_extension_length,,
return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

FMH5_extension (character input) specifies the information beyond the base FMH-5.
All of the extension data for the conversation must appear on a single CMSFM5
statement. Subsequent CMSFM5 statements for this conversation overwrite any
extension information previously supplied.

The format is a character string from two to 255 characters long and must appear
exactly as it would appear in an FMH-5.

386 WSim Script Guide and Reference

FMH5_extension_length (numeric input) specifies the total length of the extension.
The format is an integer value from two to 255. If an incorrect length is specified,
the statement completes with a parameter check return code.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

The CMSFM5 statement provides FMH-5 extension data to WSim during a CPI-C
simulation. The CMSFM5 statement is an extension to the CPI-C architecture. A
program uses the CMSFM5 statement to provide additional information beyond
the base FMH-5 that may be required for an Attach request. This additional
information is called FMH-5 extension data, and can include security subfields,
logical unit of work, conversation correlator, and PIP data.

For more information on the format of the base FMH-5, refer to VTAM
Programming for LU 6.2. The CMSFM5 statement is used to supply all data that is
required beyond the base FMH-5 (defined by the ISTFM5 DSECT). This data is
specified by the FMH5_extension parameter. The format of this parameter is a
character string from 2 to 255 bytes long. The extension data must be specified
exactly as it would appear in an FMH-5. For example, if both access security
information and a conversation correlator are required; specify the data defined by
the FM5ASI DSECT, followed by the data defined by the FM5CVCOR DSECT. The
FMH5_extension_length parameter must reflect the total length of the FMH-5
extension data. The format of this parameter is an integer from 2 to 255. If an
incorrect length is specified by this parameter, or within the extension data, the
CMSFM5 verb will complete with a parameter check return code.

CMSLD — Set_Log_Data

CMSLD (conversation_ID, log_data, log_data_length, return_code),
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

log_data (character input) specifies the program-unique error information that is to
be logged. The data supplied by the program is any data that the program wants
logged. The data must be from character set 00640.

log_data_length (numeric input) specifies the length of the program-unique error
information. The length can be from 0 to 512 bytes. If zero, the log_data_length
characteristic is set to zero (effectively setting the log_data characteristic to the null
string), and the log_data parameter of this statement is ignored.

Chapter 25. Reference to STL statements 387

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. The default log_byte is
X'00'. Only the first character or first two hexadecimal digits of the string
expression are used.

Function

A program uses the CMSLD statement to simulate the CPI-C CMSLD call, which is
used to set the log_data and log_data_length characteristics for a given conversation.
The CMSLD statement overrides the values that were assigned when the CMINIT
or CMACCP statement was issued.

Note: This statement applies only to basic conversations. The log_data characteristic
is ignored for mapped conversations.

For more information on CMSLD and its parameters, refer to the Set_Log_Data
(CMSLD) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSMN — Set_Mode_Name

CMSMN (conversation_ID, mode_name, mode_name_length, return_code),
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

mode_name (character input) specifies the mode name designating the network
properties for the session to be allocated to the conversation. The network
properties include, for example, the class of service to be used, and whether data is
encrypted. The mode name must be from character set 01134. (A program must
have special authority to specify a mode name that is used by SNA service
transaction programs only, such as SNASVCMG.)

mode_name_length (numeric input) specifies the length of the mode name. The
length can be from zero to eight bytes. If zero, the mode name for this
conversation is set to null and the mode_name parameter included with this
statement is not significant.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

388 WSim Script Guide and Reference

Function

A program uses the CMSMN statement to simulate the CPI-C CMSMN call, which
is used to set the mode_name and mode_name_length characteristics for a
conversation. The CMSMN statement overrides the current values, which were
originally acquired from the side information using the sym_dest_name. Issuing this
statement does not change the values in the side information. It only changes the
mode_name and mode_name_length for this conversation.

Note: The CMSMN statement can be issued onlyafter the CMINIT for the
conversation has completed, and before the CMALLC is issued.

For more information on CMSMN and its parameters, refer to the Set_Mode_Name
(CMSMN) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSPLN — Set_Partner_LU_Name

CMSPLN (conversation_ID, partner_LU_name,partner_LU_name_length,,
return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

partner_LU_name (character input) specifies the name of the remote LU at which
the remote program is located. This LU name is any name by which the local LU
knows the remote LU for purposes of allocating a conversation. The partner LU
name must be from character set 01134.

partner_LU_name_length (numeric input) specifies the length of the partner LU
name. This value can be from 1 to 17.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSPLN statement to simulate the CPI-C CMSPLN call,
which is used to set the partner_LU_name and partner_LU_name_length
characteristics for a given conversation. The CMSPLN statement overrides the
current values, which were originally acquired from the side information using the
sym_dest_name. Issuing this statement does not change the values in the side
information. It only changes the partner_LU_name and partner_LU_name_length for
this conversation.

Chapter 25. Reference to STL statements 389

Note: The CMSPLN statement can be issued only after the CMINIT for the
conversation has completed,and before the CMALLC is issued.

For more information on CMSPLN and its parameters, refer to the
Set_Partner_LU_Name (CMSPLN) call description in the “Call Reference” chapter
of Systems Application Architecture Common Programming Interface Communications
Reference.

CMSPTR — Set_Prepare_To_Receive_Type

CMSPTR (conversation_ID, prepare_to_receive_type, return_code),
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

prepare_to_receive_type (numeric input) specifies the type of prepare-to-receive
processing to be performed for this conversation. The prepare_to_receive_type
variable can have one of the following values:

CM_PREP_TO_RECEIVE_SYNC_LEVEL
CM_PREP_TO_RECEIVE_FLUSH
CM_PREP_TO_RECEIVE_CONFIRM

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSPTR statement to simulate the CPI-C CMSPTR call, which
is usedto set the prepare_to_receive_typecharacteristic for a given conversation. The
CMSPTR statement overrides the value that was assigned when the CMINIT or
CMACCP statement was issued.

For more information on CMSPTR and its parameters, refer to the
Set_Prepare_To_Receive_Type (CMSPTR) call description in the “Call Reference”
chapter of Systems Application Architecture Common Programming Interface
Communications Reference.

CMSRC — Set_Return_Control

CMSRC (conversation_ID, return_control, return_code) [LOGGING log_byte]

390 WSim Script Guide and Reference

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

return_control (numeric input) specifies when a program receives control back after
issuing a CMALLC statement. The return_control variable can have one of the
following values:

CM_WHEN_SESSION_ALLOCATED
CM_IMMEDIATE

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSRC statement to simulate the CPI-C CMSRC call, which is
used to set the return_control characteristic for a given conversation. The CMSRC
statement overrides the value that was assigned when the CMINIT statement was
issued.

Note: The CMSRC statement can be issued only after the CMINIT for the
conversation has completed,and before the CMALLC is issued.

For more information on CMSRC and its parameters, refer to the
Set_Return_Control (CMSRC) call description in the “Call Reference” chapter of
Systems Application Architecture Common Programming Interface Communications
Reference.

CMSRT — Set_Receive_Type

CMSRT (conversation_ID, receive_type, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

receive_type (numeric input) specifies the type of receive to be performed. The
receive_type variable can have one of the following values:

CM_RECEIVE_AND_WAIT
CM_RECEIVE_IMMEDIATE

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte

Chapter 25. Reference to STL statements 391

remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSRT statement to simulate the CPI-C CMSRT call, which is
usedto set the receive_typecharacteristic for a conversation. The CMSRT statement
overrides the value that was assigned when the CMINIT or CMACCP statement
was issued.

For more information on CMSRT and its parameters, refer to the Set_Receive_Type
(CMSRT) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSSL — Set_Sync_Level

CMSSL (conversation_ID, sync_level, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

sync_level (numeric input) specifies the synchronization level that the local and
remote programs can use on this conversation. The sync_level can have one of the
following values:

CM_NONE
CM_CONFIRM

Note: WSim does not support the sync-point synchronization level.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSSL statement to simulate the CPI-C CMSSL call, which is
used to set the sync_level characteristic for a given conversation. The sync_level
characteristic is used to specify the level of synchronization processing between the
two programs. WSim supports either no synchronization or confirmation-level
synchronization (using the CMCFM or CMCFMD statements). The CMSSL
statement overrides the value that was assigned when the CMINIT statement was
issued.

Note: The CMSSL statement can be issued only after theCMINIT for the
conversation has completed, and before the CMALLC is issued.

392 WSim Script Guide and Reference

For more information on CMSSL and its parameters, refer to the Set_Sync_Level
(CMSSL) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSST — Set_Send_Type

CMSST (conversation_ID, send_type, return_code) [LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

send_type (numeric input) specifies what, if any, information is to be sent to the
remote program in addition to any data supplied on the CMSEND call, and
whether the data is to be sent immediately or buffered.

The send_type variable can have one of the following values:
CM_BUFFER_DATA
CM_SEND_AND_FLUSH
CM_SEND_AND_CONFIRM
CM_SEND_AND_PREP_TO_RECEIVE
CM_SEND_AND_DEALLOCATE

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSST statement to simulate the CPI-C CMSST call, which is
usedto set the send_typecharacteristic for a conversation. The CMSST statement
overrides the value that was assigned when the CMINIT or CMACCP statement
was issued.

For more information on CMSST and its parameters, refer to the Set_Send_Type
(CMSST) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMSTPN — Set_TP_Name

CMSTPN (conversation_ID, TP_name, TP_name_length, return_code),
[LOGGING log_byte]

Chapter 25. Reference to STL statements 393

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

TP_name (character input) specifies the name of the remote program. A program
with the appropriate privilege can specify the name of an SNA service transaction
program. The TP name must be from character set 00640.

TP_name_length (numeric input) specifies the length of the TP_name. The value can
be from 1 to 64.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMSTPN statement to simulate the CPI-C CMSTPN call,
which is used to set the TP_name and TP_name_length characteristics for a given
conversation. The CMSTPN statement overrides the current value that was
originally acquired from the side information using the sym_dest_name. Issuing this
statement does not change the value of TP_name in the side information. It only
changes the TP_name for this conversation.

Note: The CMSTPN statement can be issued onlyafter the CMINIT for the
conversation has completed, and before the CMALLC is issued.

For more information on CMSTPN and its parameters, refer to the Set_TP_Name
(CMSTPN) call description in the “Call Reference” chapter of Systems Application
Architecture Common Programming Interface Communications Reference.

CMTRTS — Test_Request_To_Send_Received

CMTRTS (conversation_ID, request_to_send_received, return_code),
[LOGGING log_byte]

Where

conversation_ID (character input) specifies the conversation identifier of the desired
conversation.

request_to_send_received (numeric output) specifies the variable containing an
indication of whether or not a request-to-send notification has been received. The
request_to_send_received variable can have one of the following values:

CM_REQUEST_TO_SEND_RECEIVED
CM_REQUEST_TO_SEND_NOT_RECEIVED

394 WSim Script Guide and Reference

Unless return_code is set to CM_OK, the value of request_to_send_received is not
meaningful.

return_code (numeric output) specifies the result of the statement execution.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with this CPI-C statement during logging. The log_byte
remains active until another CPI-C statement is issued. Only the first character or
first two hexadecimal digits of the string expression are used. The default log_byte
is X'00'.

Function

A program uses the CMTRTS statement to simulate the CPI-C CMTRTS call, which
is usedto determine whether a request-to-send notification has been received from
the remote program for the specified conversation.

For more information on CMTRTS and its parameters, refer to the
Test_Request_To_Send_Received (CMTRTS) call description in the “Call Reference”
chapter of Systems Application Architecture Common Programming Interface
Communications Reference.

COLOR

COLOR color_specification

Where

color_specification is a string constant taken from the following list:
v BLUE
v FIELD
v GREEN
v PINK
v RED
v TURQUOISE
v WHITE
v YELLOW

You can use uppercase or lowercase letters. You must enclose the string constant in
single or double quotation marks.

Function

The COLOR statement simulates the action of the 3270 key that selects the color
for displaying data. This statement is valid only for 3270 or LU Type 2 simulations.

If you do not code the COLOR statement, the extended field attribute byte value
determines the color.

Use the “FIELD” string constant to select the color defined by the extended field
attribute byte.

Chapter 25. Reference to STL statements 395

Examples
type ’Hello’ /* The color of "Hello" is determined by the */

/* extended field attribute. */
color ’red’ /* Display the following data in red. */
type ’Goodbye’ /* "Goodbye" will be red. */

CONSTANT

CONSTANT name {integer_constant_expression}
{string_constant_expression}

Where

name is a 1-character to 32-character name conforming to the rules for STL variable
names. (See “Using variables and constants” on page 237 for more information
about variable naming rules.)

integer_constant_expression is an integer constant or an expression involving only
integer constants.

string_constant_expression is a string constant or an expression involving only string
constants.

Function

The CONSTANT statement declares a named integer or string constant to the STL
Translator. Once declared, the translator substitutes the value of the specified
constant expression whenever it encounters name in the program.

Examples
constant a 1 /* "A" is a named constant with an */

/* integer value of 1. */
constant x a+5 /* "X" is a named constant with an */

/* integer value of 6. */
constant s ’Hello’ /* "S" is a named constant with a */

/* string value of ’Hello’. */
constant t ’there’ /* "T" is a named constant with a */

/* string value of ’there’. */
constant y s’ ’t /* "Y" is a named constant with a */

/* string value of ’Hello there’. */
&#8942;
b = a /* Equivalent to: b = 1. */
b = 5*x /* Equivalent to: b = 30. */
c = s /* Equivalent to: c = ’Hello’. */
c = s t /* Equivalent to: c = ’Hello’ ’there’. */
c = y /* Equivalent to: c = ’Hello there’. */

Notes
v Use named constants instead of string or integer variables whenever possible

because they do not require counters, save areas, or switches.
v The CONSTANT statement is a declarative statement. You can code it only

outside an STL procedure.

396 WSim Script Guide and Reference

CTAB

CTAB

Function

The CTAB statement conditionally tabs to the next field if the cursor is not
currently at the beginning of a field. This statement is valid for simulation of 3270
terminals only.

Examples
type ’1234’
ctab /* If the previous entry did not fill the input */

/* field, tab to the next input field. */

CURSOR

CURSOR({integer_expression}[,integer_expression])
{direction}

Where

integer expression is an integer expression.

direction is a string constant taken from the following list: UP, DOWN, LEFT,
RIGHT. You can use uppercase or lowercase letters. You must enclose the string
constant in single or double quotation marks.

Function

The CURSOR statement positions the cursor at an absolute screen location or
moves the cursor up, down, left, or right relative to its current location. This
statement has no effect for nondisplay terminals.

If you specify a single integer expression, the argument is interpreted as an
absolute screen offset (offset zero is the first screen position).

If you specify two integer expressions, the first is interpreted as an absolute row
number and the second as an absolute column number (row 1, column 1 is the first
position on the screen).

Valid row and column designations must be from 1 to 255. Valid offset
designations must be from 0 to 32766.

If you specify a direction (“UP”, “DOWN”, “LEFT”, or “RIGHT”), the cursor will
be moved in the indicated direction. If you specify an integer expression as a
second argument, the cursor will be moved that number of spaces. If you do not
specify a second argument, the cursor will be moved one space.

Chapter 25. Reference to STL statements 397

Examples
cursor(1,1) /* Position the cursor at row 1, */

/* column 1. */
cursor(1000) /* Position the cursor at offset */

/* 1000 on the screen. */
row_number = 12
cursor(row_number,1) /* Position the cursor at row 12, */

/* column 1. */
cursor("up") /* Move the cursor up one row. */
count = 20
cursor("left",count+1) /* Move the cursor left 21 columns. */

Note

For display terminals with multiple partitions defined, the CURSOR statement
moves the cursor within the currently active partition. When a row and column are
specified, however, the cursor is moved to that location on the entire screen (not
just within the currently active partition). The partition that owns the area of the
display where the cursor was moved becomes the currently active partition.

CURSRSEL

CURSRSEL

Function

The CURSRSEL statement simulates the action of the Cursor Select key on the 3270
display terminals. It is valid for simulation of these terminals only.

Examples
cursor(index(screen,’XXXX’)) /* Position cursor on first */

/* occurrence of XXXX. */
btab /* Back up to input field. */
cursrsel /* Select this item. */
cursor(index(screen,’YYYY’)) /* Position cursor on first */

/* occurrence of YYYY. */
btab /* Back up to input field. */
cursrsel /* Select this item. */

Note

When selected using the Cursor Select key or a light pen, some display fields
transmit accumulated message data automatically. Your application determines
which fields cause such transmission.

Thus, it is possible that an STL program might be interrupted by a CURSRSEL
statement. Select these fields using TRANSMIT USING CURSRSEL rather than
CURSRSEL. The TRANSMIT USING CURSRSEL statement allows you to specify a
WAIT condition, enabling you to control the execution of your STL program better.

398 WSim Script Guide and Reference

DEACT

DEACT {onin_onout_labels}
{event_names}
{ALL IO ONS}
{ALL EVENT ONS}

Where

onin_onout_labelsare one or more labels coded on previous ONIN or ONOUT
statements. Multiple labels must be separated by commas.

event_namesare one or more string expressions that specify the names of events.
Multiple event names must be separated by commas. String constant expressions
must be 1 to 8 alphanumeric characters and enclosed in single or double quotes.
(Strings containing hexadecimal constants are exempt from this restriction.) If you
specify a nonconstant string expression, the first 8 characters of the string or
substring are used. If the string is shorter than 8 characters, the available characters
are used. To satisfy conditions using event names, the first 8 characters must match
exactly. If you specify a string variable, it cannot be the name of one of the
reserved variables (for example, BUFFER).

Function

The DEACT statement deactivates outstanding ONIN, ONOUT, or ON SIGNALED
statement conditions. Unless explicitly deactivated using this statement, these
conditions will remain active for the duration of the current STL program (ONIN
and ONOUT), or until the specified event is signaled (ON SIGNALED).

If you specify ONIN or ONOUT labels, only the conditions on the statement
identified by those labels are deactivated. If ALL IO ONS is specified, all currently
active ONIN and ONOUT conditions are deactivated.

If you specify event names, all ON SIGNALED conditions referencing the specified
names are deactivated. If you specify ALL EVENT ONS, all currently active ON
SIGNALED conditions are deactivated.

Examples
Example 1

getout: onin index(data,’ABEND’) > 0 then deact getout
/* Don’t look for ABEND anymore. */

Example 2

on signaled(’ALLOK’) then say ’Everything went well with this test’
&#8942;
if index(screen,’ERROR!!!’) > 0 then

deact ’ALLOK’ /* Deactivate all ON conditions for */
/* event ALLOK if an error occurs. */

&#8942;
signal ’ALLOK’ /* Write ALL OK message if there were */

/* no errors. */

Example 3

Chapter 25. Reference to STL statements 399

red: onin index(data,’RED’) > 0 then color = ’RED’
blue: onin index(data,’BLUE’) > 0 then color = ’BLUE’
green: onin index(data,’GREEN’) > 0 then color = ’GREEN’
&#8942;
if index(screen,’GRAPHIC CARD ERROR’) > 0 then

deact red, blue, green

Example 4

on signaled(’INITCARD’) then say ’Graphic Card Initialized’
on siganled(’INITSCRN’) then say ’Screen Initialized’
on signaled(’INITMENU’) then say ’Please Make a Selection’
&#8942;
if index(screen,’ERROR’) > 0 then

deact ’INITCARD’, ’INITSCRN’, ’INITMENU’

Notes
v If you use an ONIN or ONOUT label in the DEACT statement, you must have

coded the label on an ONIN or ONOUT statement above the DEACT statement
in the current STL program. Attempts to deactivate specific ONIN or ONOUT
conditions that have not yet been processed by the STL Translator in the current
program are flagged as errors.

v When multiple labels or names are entered on several lines, two commas are
necessary to continue the DEACT statement. For example:
DEACT ’EVENT1’, ’EVENT2’,,

’EVENT3’

DELAY

DELAY({’RATE’,rate_table_number}[,uti_name])
{fixed_time}
{random_function}

Where

rate_table_number is either an integer constant or an arithmetic expression involving
only integer constants. It must be from 0 to 255. fixed_time is an integer expression
with a value from 0 to 2147483647.

random_function is a RANDOM function. See “RANDOM” on page 481 for the
syntax of this function.

uti_name is a string constant expression that is the name of a UTI statement in the
network definition.

Note: The name of the network-level UTI is NTWRKUTI.

Function

The DELAY statement specifies the delay after the next transmit by a simulated
terminal. The value specified in this statement will override the default delay for
the terminal (specified with the DELAY operand for the terminal in the network
definition).

400 WSim Script Guide and Reference

The actual delay (in hundredths of seconds) will be the delay value specified in
this statement multiplied by the terminal's UTI value or by the value of the named
UTI that you specify as an argument. This value applies to the RATE, fixed time,
and random number specifications.

If you specify a single integer constant expression, that integer will be the delay
value.

If the first argument is 'RATE', the delay value is chosen randomly from the rate
table on the RATE statement referenced by the following integer constant. The
RATE statement is a network definition statement.

If you use a RANDOM function as an argument, the resulting random number is
used as the delay value.

Examples
exdelay: msgtxt
say ’setting delay 1’ tod()
delay(5) /* Set a delay of 5 times */

/* the UTI value for message 2. */
type ’Message 1’
transmit
say ’setting delay 2’ tod()
delay(random(1,10)) /* Set a delay of a random number from */
type ’Message 2’ /* 1 to 10 multiplied by the UTI value */

/* for message 3. */
transmit
type ’Message 3’
transmit
endtxt

Note

This statement affects only the delay immediately following the next interruption
of STL processing (normally a Transmit Interrupt). In other words, message 1 is
sent with the default delay. Then, the five second delay takes effect before
resuming program execution, causing message 2 to be sent. Subsequent delays
revert to the default delay for the terminal until another DELAY statement is
coded.

DELETE

DELETE [delete_count]

Where

delete_countmust be an integer expression with a value from 1 to 255. If delete_count
is not specified, a value of 1 is assumed.

Function

The DELETE statement simulates the action of the Delete key on 3270 and 5250
display terminals. The statement is valid for simulation of these terminals only.
delete_count is the number of characters to be deleted beginning with the character
at the cursor's current position.

Chapter 25. Reference to STL statements 401

Examples
text = ’This text must be deleted!!!’
cursor(index(screen,text))

/* Either one of the following DELETE statements can be used to */
/* delete this string from the screen. */

delete 28

/* The following statement has the same effect. */

delete length(text)

Note

The DELETE statement is ignored if the cursor is not currently positioned at an
input field. WSim writes an informational message to the log data set if a DELETE
statement is ignored.

DO statements
The four DO statements in STL are the following:
v Simple DO groups
v DO WHILE loops
v DO FOREVER loops
v Iterative DO loops.

Each of these DO statements is described separately in the following sections.

Simple DO groups

DO
statement
.
.
.

END

Where

statement is any valid STL statement or statement group.

Function

The statements in a simple DO group are executed once, as though they were a
single statement.

When coded after a THEN, ELSE, or WHEN statement, simple DO groups enable
you to execute multiple statements conditionally.

Examples
if a = 1 then

do
b = 0 /* Both statements in this DO group will */
c = 0 /* be executed if "a" has a value of 1. */

end

402 WSim Script Guide and Reference

DO WHILE loops

DO WHILE condition
statement

.

.

.
END

Where

condition is a valid STL condition. See “Using conditions and relational operators”
on page 261 for more information about conditions.

statement is any valid STL statement or statement group.

Function

WSim executes the statements contained in a DO WHILE group repetitively while
the specified condition remains true. When WSim first encounters the DO WHILE
statement, it evaluates the condition. If the condition is true, WSim executes the
group of statements between the DO WHILE and the END statements. Control
returns to the DO WHILE statement where the condition is reevaluated. If the
condition is false, control passes to the statement following the END statement,
and the DO WHILE group of statements is not executed.

Examples
a = 0
do while a < 100 /* Execute the following statements */

/* while a < 100. */
say ’The value of A is’ char(a)
a = a + 1

end

DO FOREVER loops

DO FOREVER
statement
.
.
.

END

Where

statement is any valid STL statement or statement group.

Function

A DO FOREVER loop is like a DO WHILE loop whose condition is always true.
WSim executes the statements in a DO FOREVER group repeatedly until a LEAVE
statement is executed or the simulated network is canceled. (You can use various
operator commands to cancel a network. See , SC31-8948 for details.)

Chapter 25. Reference to STL statements 403

Use this statement with care, since it can result in a “program execution loop,” in
which STL execution for the simulated terminal is never interrupted.

Examples
do forever

type ’1234567890’
transmit and wait until onin /* Wait until something is */

/* received. */
end

Iterative DO loops

DO control_variable = initial_value TO exit_value [BY increment]
statement
.
.
.

END

Where

control_variable is an integer variable.

exit_value is an integer expression.

initial_value is an integer expression.

increment is an integer constant or an integer variable.

statement is any valid STL statement or statement group.

Function

WSim executes an iterative DO group of statements in a loop until the value of the
control variable exceeds the exit value. When WSim first encounters the iterative
DO statement, it assigns the initial value to the control variable. On subsequent
iterations, WSim increments the control variable by the specified increment value.
If you do not specify an increment, WSim uses a default increment of 1.

After the control variable is incremented (or initialized on the first iteration of the
loop), WSim compares its value with the exit value. If the control variable's value
is less than or equal to the exit value, the statements between the DO and END
statements are executed. If the value of the control variable exceeds the exit value,
control passes to the statement following the END.

Examples

The following iterative DO loop performs the same function as the DO WHILE
loop that appears on “DO WHILE loops” on page 403. Note that the default
increment of one is used.
do a = 0 to 99 /* Execute the following statements */

/* 100 times. */
say ’The value of A is ’char(a)

end

404 WSim Script Guide and Reference

Note

The execution of DO WHILE, DO FOREVER, and iterative DO loops can be
modified by the ITERATE and LEAVE statements. See “ITERATE” on page 413 and
“LEAVE” on page 414 for descriptions of these statements.

DUP

DUP

Function

The DUP statement simulates the action of the duplicate key on 3270 and 5250
display terminals. The statement is valid for simulation of these terminals only.

Examples
dup

ENDTXT

ENDTXT

Function

The ENDTXT statement ends an STL procedure.

Examples
myproc: msgtxt
&#8942;
endtxt /* End of MYPROC. */

ENDUTBL

ENDUTBL

Function

The ENDUTBL statement ends an STL user table.

Examples
mytabl: msgutbl
&#8942;
endutbl /* End of MYTABL. */

Chapter 25. Reference to STL statements 405

EREOF

EREOF

Function

The EREOF statement simulates the action of the Erase to End of Field key on 3270
display terminals. The statement is valid for simulation of these terminals only.

Examples
type ’Now is the time for all good men’
ereof /* Make sure the rest of this input field is erased. */
tab /* Move to the next input field. */

ERIN

ERIN

Function

The ERIN statement simulates the Erase Input key on 3270 and 5250 display
terminals. It erases all input fields on a panel. This statement is valid for
simulation of these terminals only.

Examples
erin /* Erase all input fields on a panel. */

EXECUTE

EXECUTE execute_procedure_name

Where

execute_procedure_name is the name on an STL statement that defines an STL
execute procedure.

Function

The EXECUTE statement is an asynchronous subset statement. When encountered
in an ONIN, ONOUT, or ON SIGNALED statement, EXECUTE causes the named
procedure to be executed immediately by WSim. This execution is asynchronous to
normal STL program execution.

Examples
mainproc: msgtxt
onin substr(ru,1,5) = ’ERROR’ then execute hiterror
onin substr(ru,200,5) = ’ERROR’ then execute hiterror
&#8942;

406 WSim Script Guide and Reference

endtxt /* End of Mainproc. */
hiterror: msgtxt /* This procedure is executed when */

/* ’ERROR’ is received. */
say ’An error was found in the received data.’
endtxt

Notes
v Execute procedures can contain only a limited subset of STL statements and

expressions. The STL Translator enforces these limitations when processing an
STL procedure that has been previously referenced in an EXECUTE statement.

v Use of a procedure name in an EXECUTE statement defines that procedure as an
execute procedure. Use of a procedure name in a CALL statement defines that
procedure as a called procedure. When the STL Translator encounters an STL
statement that has not been defined as an execute procedure, it defines it as a
called procedure. The name of an execute procedure cannot be used in a CALL
statement, nor can a called procedure name be used in an EXECUTE statement.

v This statement must be coded directly following the THEN keyword on the
ONIN, ONOUT, or ON SIGNALED statement.

v For more information about the EXECUTE asynchronous subset statement and
the statements that you can use in an execute procedure, see “Using
asynchronous subset statements” on page 294.

FLDADV

FLDADV

Function

The FLDADV statement simulates the action of the Field Advance key on a 5250
display terminal. It moves the cursor to the next input field. The statement is valid
for simulation of this terminal only.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
fldadv /* Advance to the next input field. */

FLDBKSP

FLDBKSP

Function

The FLDBKSP statement simulates the action of the Field Backspace key on a 5250
display terminal. The statement is valid for simulation of this terminal only.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
fldbksp /* Back up to previous input field. */

Chapter 25. Reference to STL statements 407

FLDMINUS

FLDMINUS

Function

The FLDMINUS statement simulates the action of the Field Minus (F-) key on a
5250 display terminal. The statement is valid for simulation of this terminal only.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
fldminus /* Simulate action of Field Minus key. */

FLDPLUS

FLDPLUS

Function

The FLDPLUS statement simulates the action of the Field Exit or Field Plus (F+)
key on a 5250 display terminal.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
type ’Hello’
fldplus /* Clear the rest of this field and */

/* advance to the next. */

FM

FM

Function

The FM statement simulates the Field Mark key on 3270 display terminals. The
statement is valid for simulation of these terminals only.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
fm /* Mark this field. */

Note

You can also simulate the FM key by including the FM function in a string on a
TYPE statement. For example:
type ’some data’fm() /* Enter data and include a field mark. */

408 WSim Script Guide and Reference

HIGHLITE

HIGHLITE highlight_specification

Where

highlight_specification is a string constant from the following list:
v BLINK
v FIELD
v REVERSE
v UNDERLINE.

You can use uppercase or lowercase letters. You must enclose the string constant in
single or double quotation marks.

Function

The HIGHLITE statement simulates a 3270 key that selects the highlighting option
for displaying data input.

highlight_specification specifies the highlighting option to be used for displaying
subsequent data input from this terminal. You may choose one of the following
highlighting options:

BLINK The display of the input data will alternate between display and nondisplay
modes.

FIELD The highlighting option defined by the extended field attribute byte will be
selected.

REVERSE The input data will be displayed as reversed image characters.

UNDERLINE The displayed input data will be underlined.

Examples
type ’Hello’ /* "Hello" is entered as normal text. */
highlite "reverse"
type ’Goodbye’ /* "Goodbye" is entered as reverse video. */

Note

If you do not code the HIGHLITE statement, the highlighting option is selected by
the extended field attribute byte value.

HOME

HOME

Function

The HOME statement simulates the Home key on 3270 and 5250 display terminals.
The statement is valid for simulation of these terminals only.

Chapter 25. Reference to STL statements 409

Examples
home /* Move cursor to first input field on screen. */
type ’Hello’

IF

IF condition THEN[;] statement[;]
[ELSE[;] statement]

Where

condition is any valid STL condition.

statement is a single statement or a statement group, such as a DO or SELECT
group. It may also be another IF statement.

Function

The IF statement is used to execute a statement or group of statements
conditionally. If the condition is true, the statement (or statement group) following
the THEN keyword is executed. If the condition is false and an ELSE has been
coded, the statement following the ELSE keyword is executed. If the condition is
false and an ELSE has not been coded, execution continues with the statement
following the IF/THEN statement; the statement following the THEN keyword is
not executed.

Examples
if a = 1 then

say ’A has a value of 1’
else

say ’A does not have a value of 1’

if mydata = ’Hello’ then
do
say ’MYDATA has a value of "Hello"’
a = 1
b = off
end
else /* MYDATA is not Hello. */
if mydata = ’Goodbye’ then
say ’MYDATA has a value of "Goodbye"’
else
nop

Note

A semicolon (;) is not required between a THEN or ELSE keyword and the
following statement, as shown in the following example.
if a = 1 then say ’A has a value of 1’
else say ’A does not have a value of 1’

INITSELF

INITSELF(resource[,[mode][,[user_data][,log_byte]]])

410 WSim Script Guide and Reference

Where

resource is a string expression. If resource is a string constant expression, it must be
1 to 8 alphanumeric characters and must not contain blanks. The characters must
be enclosed in single or double quotation marks. String constant expressions
containing hexadecimal strings are exempt from this restriction. The STL Translator
will translate all lowercase characters to uppercase in these constants.

mode is a string expression. If mode is a string constant expression, it must be 1 to 8
alphanumeric characters and must not contain blanks. The STL Translator will
translate all lowercase characters to uppercase in these constants. These constants
must be enclosed in single or double quotation marks. String constant expressions
containing hexadecimal strings are exempt from this restriction.

user_data is a string expression. The length of user_data should not exceed 255
characters although the STL Translator permits longer strings. A maximum of 255
characters will be sent.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with all data transmitted and received. The log_byte
remains active until data is “typed” and transmitted with a TRANSMIT statement
or until an INITSELF, TERMSELF, or SNACMND statement is issued. This byte
gives users of the Response Time Utility a way to identify transactions when
gathering statistics by the various user-defined “log_byte” categories. Only the first
character or first two hexadecimal digits of the string expression are used. The
default log_byte is X'00'.

Function

The INITSELF statement sends an INITIATE SELF format 0 RU to initiate sessions
when simulating SNA terminals or logical units (LUs).

resource specifies the name of the partner LU. The mode is the name of a mode
entry table, which you may need to use when simulating SNA terminals or logical
units. The user_data is typically information such as a password, which is unique to
a user.

For additional examples of the INITSELF statement and a complete description of
its use, see “Logging on and off an application” on page 278.

Examples
initself(’MYAPPL’,’MYMODE’,’MYPASSWD’) /* Includes mode entry */

/* and user data. */

initself(’MYAPPL’,,’MYPASSWD’) /* Includes user data, */
/* but no mode entry. */

initself(’MYAPPL’,’MYMODE’,,’A5’x) /* Includes mode entry */
/* and log byte. */

log_byte = ’m’
initself(’MYAPPL’,,,log_byte) /* Includes a variable */

/* log byte */

Chapter 25. Reference to STL statements 411

Notes
v The INITSELF statement causes a Transmit Interrupt. Thus, all accumulated

message data will be sent.
v The INITSELF statement is identical to specifying a type of INITSELF on the

SNACMND statement.

INSERT

INSERT

Function

The INSERT statement simulates the Insert key on 3270 display terminals. The
statement is valid for simulation of these terminals only.

Examples
type ’Now is time’ /* Enter text into current field on screen. */
cursor(’left’,4) /* Move back to the ’t’ in ’time’. */
insert /* Get into insert mode. */
type ’the ’ /* Insert ’the ’ before ’time’. */

/* Current field should now contain ’Now is */
/* the time’. */

reset /* Get out of insert mode. */

INTEGER

INTEGER [{SHARED|UNSHARED}] variable_list

Where

variable_list is any number of valid STL variable names not previously declared,
separated by commas.

Function

The INTEGER statement explicitly declares one or more INTEGER variables, which
can be specified as SHARED or UNSHARED. The default class is UNSHARED.

Examples
/* Declares the unshared integer variables, */
/* "amount" and "balance". */

integer unshared amount, balance

integer mycount /* Declares the unshared integer variable, */
/* "mycount". */

integer shared total /* Declares the shared integer variable, */
/* "total". */

412 WSim Script Guide and Reference

Note

The INTEGER statement is a declarative statement. You can code it only outside
an STL procedure.

ITERATE

ITERATE

Function

The ITERATE statement causes an immediate iteration of the innermost DO
WHILE, DO FOREVER, or iterative DO loop.

When WSim encounters this statement, it stops execution of the statements within
the loop, and passes control back to the DO statement. When it is a DO WHILE
statement WSim evaluates the condition and executes the DO WHILE group of
statements again if the condition is true. If it is a DO FOREVER statement, the
statement group is executed again. When it is an iterative DO statement, the value
of the control variable is incremented, and the DO statement group is executed
again if the new value does not exceed the exit value.

Examples

The following code transmits the numbers 0-19 and 21-99. The number 20 will not
be transmitted.
b = 20
do a = 0 to 99

if b = a then
iterate

type char(a)
transmit

end

Note

You can code the ITERATE statement only inside a repetitive DO loop.

JUMP

JUMP [pid_number]

Where

pid_number is an integer constant expression from 0 to 15.

Function

The JUMP statement simulates the Jump key on a 3270 display terminal. The
statement is valid for simulation of this terminal only.

Chapter 25. Reference to STL statements 413

pid_number specifies the partition identification number (PID) of the partition to be
made active with the JUMP statement. When you code the JUMP statement
without the PID operand, the next sequential partition becomes active.

Examples

The following example enters the same data in partitions 0, 1, 2, and 3.
jump 0 /* Go to partition 0. */
do i = 1 to 4 /* Do the following 4 times. */

type ’hello’ /* Enter data in the current partition. */
jump /* Jump to the next partition. */

end

LCLEAR

LCLEAR

Function

The LCLEAR statement simulates the Local Clear key on 3270 display terminals.
The statement is valid for simulation of these terminals only.

Examples
home /* Move to first input field on screen. */
lclear /* Clear the screen (local clear). */

LEAVE

LEAVE

Function

The LEAVE statement stops execution of the innermost DO WHILE, DO
FOREVER, or iterative DO loop. Control passes to the statement following the
END statement for the loop.

Examples

The following code writes the string 'Hello' to the operator three times.
a = 1
do forever

if a = 4 then
leave

else
nop

say ’Hello’
a = a + 1

end

Note

You can code the LEAVE statement only inside a repetitive DO loop.

414 WSim Script Guide and Reference

LIGHTPEN

LIGHTPEN(integer_expression1[,integer_expression2])

Where

integer_expression1 is an integer expression with a value from 0 to 32766 if only one
argument is supplied or from 1 to 255 if two arguments are supplied.

integer_expression2 is an integer expression with a value from 1 to 255.

Function

The LIGHTPEN statement simulates a Selector Light Pen on 3270 and 5250 display
terminals.

If you specify a single argument, it is interpreted as a screen offset (offset 0 is the
first screen position).

If you specify two arguments, WSim interprets the first as a row number and the
second as a column number (row 1, column 1 is the first position on the screen.)

Valid row and column designations must be from 1 to 255. Valid offset
designations must be from 0 to 32766.

Examples
lightpen(index(screen,’XXXX’)) /* Select item XXXX. */

Note

When selected using the Cursor Select key or a light pen, some display fields
transmit accumulated message data automatically. Your application determines
which fields cause such transmission.

Thus, it is possible that an STL program might be interrupted by a LIGHTPEN
statement. Select these fields using TRANSMIT USING CURSRSEL rather than
LIGHTPEN. The TRANSMIT USING CURSRSEL statement allows you to specify a
WAIT condition, enabling you to better control the execution of your STL program.

LOG

LOG {string_expression}
{DISPLAY}

Where

string_expression is any valid STL string expression.

Chapter 25. Reference to STL statements 415

Function

The LOG statement writes the user-specified string expression or the 3270 or 5250
display image to the log data set for formatting by the Loglist Utility. If
string_expression is specified, the expression will be evaluated and written to the
log data set with the LOG record type. If DISPLAY is specified, the screen image
buffer and the screen attribute table will be written to the log data set with the
DSPY record type.

Examples
log ’I am going to log the display image for ’devid()
log display

MONITOR

MONITOR

Function

The MONITOR statement causes the Display Monitor Facility to display the
simulated 3270 display image as it exists at this point in the message generation
process. To use this statement, the UPDATE=MONITOR operand on the M
(Display Monitor Facility) operator command must be in effect when starting the
monitor. See , SC31-8948 for more information about the Display Monitor Facility.
This statement is valid for simulation of 3270 terminals only.

Examples
/* Cause each new screen image to be displayed by the */
/* Display Monitor Facility. */

do forever
transmit and wait until onin /* Send data and wait for new */

/* screen. */
monitor /* Display this screen. */

&#8942;
end

Note

If you execute the MONITOR statement for a terminal that is not being monitored
by the Display Monitor Facility or do not start the Display Monitor Facility with
the UPDATE=MONITOR operand, the statement is ignored.

MSGTXT

procedure_name: MSGTXT [string_constant]

Where

procedure_name is a valid STL name.

416 WSim Script Guide and Reference

string_constant is a 1- to 37-character string constant that specifies MSGTXT
operand values.

Function

The MSGTXT statement defines the start of an STL procedure.

If a string_constant is coded, it is included on the MSGTXT message generation
statement created by the STL Translator. The string constant must be enclosed in
single or double quotation marks. It can be uppercase or lowercase.

The operand values that you can specify for string_constant are listed in Part 1,
“WSim language statements,” on page 1 in the description of the MSGTXT
message generation statement.

Note: STL does not validate the operand values that you specify for
string_constant.

Examples
myproc: msgtxt /* This is the beginning of procedure */

/* MYPROC. */

yourproc: msgtxt ’text=blk’ /* In procedure YOURPROC, send text as*/
/* a block. */

MSGUTBL

msgutbl_name: MSGUTBL
utbl_entry
┌ ┐
│ utbl_entry │
│ . │
│ . │
│ . │
└ ┘
ENDUTBL

Where

msgutbl_name is a valid STL name.

utbl_entry is a string constant expression. At least one utbl_entry is required. If
multiple entries are coded, each must start on a separate line (or be separated from
the previous entry by a semicolon). String constants must be enclosed in single or
double quotation marks. You can have up to 2147483647 entries in the table.

Function

The MSGUTBL statement is used to declare a user table.

For a description of user tables and how they can be used, see “Using user tables”
on page 275.

Chapter 25. Reference to STL statements 417

Examples
myutbl: msgutbl /* This is the beginning of user table MYUTBL. */

’entry0’
’entry1’

endutbl

Notes
v The MSGUTBL statement is a declarative statement. You can code it only

outside an STL procedure.
v You may continue entries.

NL

NL

Function

The NL statement simulates the New Line key on 3270 and 5250 display terminals.
The statement is valid for simulation of these terminals only.

Examples
cursor(1,1) /* Move to row 1, column 1 on screen. */
type ’Hello’ /* Enter data on line 1. */
nl /* Move to next line on screen. */
type ’Goodbye’ /* Enter data on line 2. */

Note

You can also simulate the action of the NL key by including the NL function on a
TYPE statement.

NOP

NOP

Function

NOP is a dummy statement that has no effect. It can be useful as the target of a
THEN, ELSE, or OTHERWISE statement.

Examples
if index(screen,’Hello’) > 0 then

nop
else /* Hello not on screen. */

error_flag = on

NORESP

NORESP

418 WSim Script Guide and Reference

Function

The NORESP statement is an asynchronous subset statement. When executed, it
suppresses the automatic generation of SNA responses by WSim. Instead, WSim
will interpret the next message transmitted by the terminal as the user-provided
SNA response.

Examples
onin substr(ru,1,33) = ’Please send me a strange response’ then error = on
onin substr(ru,1,33) = ’Please send me a strange response’ then noresp
&#8942;
transmit and wait until ...
if error = on then /* Need to send exception sense response. */

do
type ’012345678’
setrh on(exc,sni)
suspend() /* Required to send response without */

/* sending an AID. */
end

Notes
v A TRANSMIT statement should not be used to send the response. This causes

an AID byte to be set. Instead, code SUSPEND(). This causes program execution
to be interrupted and the response to be sent.

v The NORESP statement ensures that an SNA response is always sent.
v The NORESP asynchronous subset statement is ignored for non-SNA terminals.

If the NORESP asynchronous subset statement is not coded, WSim will
automatically build the SNA response.

v This statement must be coded directly following the THEN keyword on the
ONIN or ONOUT statement.

ON SIGNALED

ON SIGNALED(event_name) THEN[;] asynchronous_subset_statement

Where

event_name is a string variable, a substring (SUBSTR) of a string variable, or a
string constant expression that specifies the name of an event. If it is a string
constant expression, event_name must be between 1 and 8 alphanumeric characters
and enclosed in single or double quotes. If you specify a string variable or a
substring of a string variable, the first 8 characters of the string or substring will be
used. If the string or substring is shorter than 8 characters, the available characters
will be used. To satisfy conditions using event names, the first 8 characters must
match exactly. If you specify a string variable, it cannot be the name of one of the
reserved variables (for example, BUFFER).

asynchronous_subset_statement is one of the following STL statements permitted on
asynchronous statements:
v ABORT statement
v CALL statement

Chapter 25. Reference to STL statements 419

v CANCEL DELAY statement
v CANCEL SUSPEND statement
v EXECUTE statement
v Any statement that can be coded within an EXECUTE procedure, except

RETURN.

Function

The ON SIGNALED statement specifies a statement or group of statements to be
executed when the event_name is signaled. For descriptions of asynchronous subset
statements, see “Using asynchronous subset statements” on page 294.

Examples
/* Tell the operator when MYEVENT is signaled. */

on signaled(’MYEVENT’) then
say ’MYEVENT has been signaled.’

/* Set some bits */

on signaled(’MYEVENT2’) then do
timer = off
begin_phase2 = on

end

Note

An event can be signaled by the execution of a SIGNAL or QSIGNAL statement or
by the issuing of the “A network, SIGNAL=event_name” command by the operator.

ONIN and ONOUT

[label:] {ONIN} [asynchronous_condition] THEN[;] asynchronous_subset_statement
{ONOUT}

Where

label is a valid STL label.

asynchronous_condition is a valid asynchronous condition. See “Setting up
asynchronous conditions” on page 299 for a description of asynchronous
conditions.

asynchronous_subset_statement is any valid asynchronous subset statement. See
“Using asynchronous subset statements” on page 294 for descriptions of
asynchronous subset statements.

Function

Use the ONIN and ONOUT statements to establish asynchronous conditions that
will be tested when data is received (ONIN) or transmitted (ONOUT) by the
terminal. These conditions, and their associated actions, are called asynchronous
because they are executed outside of normal synchronous STL program execution.

420 WSim Script Guide and Reference

Once activated (by the processing of the ONIN or ONOUT statement), these
conditions remain active for the duration of the current STL program, or until
explicitly deactivated by a DEACT statement.

Note: CPI-C simulations do not support testing of asynchronous input and output
conditions. If ONIN or ONOUT statements are specified in a CPI-C simulation
they are ignored.

Examples
asyrsp: onin rh &= ’80’x then do /* Test under mask for SNA response? */

sna_response_received = on /* Set bit for later test. */
say ’An SNA response was received.’ /* Notify the user. */
end

asyexc: onin substr(rh,2) &= ’10’x then do /* Exception response */
exception_response = on /* Set bit for later test */
say ’An exception response was received.’ /* Notify the user. */
end

&#8942;
transmit and wait until onin /* Transmit and wait for response */
/**/
/* See if an exception response was received. */
/**/
if sna_response_received & exception_response then

call erpproc
else

call goodproc

An ONIN or ONOUT statement does not have to include a condition. The THEN
keyword can immediately follow the ONIN or ONOUT keyword. All incoming
(ONIN) or outgoing (ONOUT) messages satisfy such a null condition.
onin then something_received = on /* Set bit on when anything */

/* is received. */

Note

Outstanding asynchronous conditions are tested in the order of their appearance in
an STL program (after network-level IFs). Hence, the condition labeled “asyrsp” in
the preceding example will be tested before the condition labeled “asyexc”. See
Part 1, “WSim language statements,” on page 1 for more information on network
IFs.

OPCMND

OPCMND operator_command

Where

operator_command is a string expression.

Function

The OPCMND statement specifies an operator control command to be processed as
if it were entered from the operator console. operator_command defines the operator
command to be entered when the STL program is executing. See , SC31-8948 for
details of the various operator commands.

Chapter 25. Reference to STL statements 421

Examples
opcmnd ’A ’netid()’,U=100’ /* Alter UTI to 100. */
/***/
/* The following code has the same effect as the */
/* preceding statement. In the following example, */
/* the operator command is "built" and stored in a */
/* string variable before being issued. */
/***/
uti_value = 100
operator_command = ’A ’netid()’,U=’char(uti_value)
opcmnd operator_command

Notes
v You can execute all operator commands with the OPCMND statement, with the

exception of console recovery subcommands, which must be entered by the
system console operator. Although operator_command can be any length, a
maximum of 120 characters will actually be passed to the operator command
processor.

v STL does not validate the operator command.
v The operator_command does not take effect immediately. It will be queued for

execution with any other operator commands and be executed by WSim at the
earliest when program execution is suspended.

POST

POST event_name [AFTER time [TAG event_tag]]

Where

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotes. (Strings containing hexadecimal constants are
exempt from this restriction.) If you specify a nonconstant string expression, the
first 8 characters of the string are used. If the string is shorter than 8 characters, the
available characters are used. To satisfy conditions using event names, the first 8
characters must match exactly. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

time is an integer value that indicates the number of seconds that the posting of the
event is to be delayed. It must be an integer expression with a value from 1 to
21474836.

event_tag specifies a “tag” to be assigned to the POST statement. This tag is only
valid if the time value is also coded. The rules for specifying the event_tag are the
same as those for specifying event_name.

Function

The POST statement posts the named event. Once posted, all POSTED functions
that specify event_name will return a value of true and all WAIT UNTIL POSTED
conditions specifying event_name will be satisfied.

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

422 WSim Script Guide and Reference

When you specify time and event_tag, you can cancel events that have been
assigned the same tag before the specified time has elapsed. You can assign the
same tag to events that are specified with a POST, QSIGNAL, RESET, or SIGNAL
statement. Thus, you can cancel several events by assigning them the same tag.

If an event tag is not specified, a default tag is assigned that has a value that is the
same as the event name.

See “CANCEL” on page 366 for more information about how to use a tag to cancel
events.

Examples
if message = ’Hello’ then

post ’HELLO’
else

post ’OTHER’

The following statements show how variable event names can be posted.
event_name = substr(message,43,8)
post event_name

Note

The event event_name will remain posted until the end of the program that posted
it or until it is reset by the RESET statement. The operator can post an event by
issuing the “A network, POST=event_name” command.

PUSH

PUSH string [TO queue_name]

Where

string is a string expression.

queue_name is a string expression consisting of 1 to 8 alphanumeric characters. This
is optional.

Function

The PUSH statement places string on queue_name on a last in first out (LIFO) basis.

If the specified queue_name is a nonconstant expression, the first 8 characters of the
string are used. If the string is shorter than 8 characters, the available characters
are used. When specifying queue_name with the PUSH statement, the test/string
item will be placed on a queue exactly matching queue_name. If you specify a string
variable, it cannot be the name of one of the STL reserved variables (for example,
BUFFER). If not specified, queue_name defaults to a unique value assigned to each
device.

Examples
Qname = ’QUEUE1’ /* Assigns ’QUEUE1’ to "Qname" */
push ’ABCD’ /* Places ’ABCD’ on unique device Q */
push ’1234567’ TO Qname /* Places ’1234567’ on queue ’QUEUE1’ */

Chapter 25. Reference to STL statements 423

push ’7654321’ TO ’QUEUE1’ /* Places ’7654321’ on queue ’QUEUE1’ */
a = PULL(Qname) /* Assigns ’7654321’ to "a" */
b = PULL(’QUEUE1’) /* Assigns ’1234567’ to "b" */
c = PULL() /* Assigns ’ABCD’ to "c" */

Note: The named queue structure and text/string data items are allocated
dynamically by WSim and deleted as the queue is emptied.

QSIGNAL

QSIGNAL event_name [AFTER time [TAG event_tag]]

Where

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotes. (Strings containing hexadecimal constants are
exempt from these restrictions.) If you specify a nonconstant string expression, the
first 8 characters of the string are used. If the string is shorter than 8 characters, the
available characters are used. To satisfy conditions using event names, the first 8
characters must match exactly. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

time is an integer value that indicates the number of seconds that the posting of the
event is to be delayed. It must be an integer expression with a value from 1 to
21474836.

event_tag specifies a “tag” to be assigned to the QSIGNAL statement. This tag is
only valid if the time value is also coded. The rules for specifying the event_tag are
the same as those for specifying event_name.

Function

The QSIGNAL statement causes a qualified signaling of the named event. A
qualified signal affects only the terminal that issues the QSIGNAL; therefore, only
that terminal's outstanding ON SIGNALED conditions will be satisfied.

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

When you specify time and event_tag, you can cancel events that have been
assigned the same tag before the specified time has elapsed. You can assign the
same tag to events that are specified with a POST, QSIGNAL, RESET, or SIGNAL
statement. Thus, you can cancel several events by assigning them the same tag.

If an event tag is not specified, a default tag will be assigned that has a value that
is the same as the event name.

See “CANCEL” on page 366 for more information about how to use a tag to cancel
events.

Examples
qsignal ’MYEVENT’

424 WSim Script Guide and Reference

QUEUE

QUEUE string [TO queue_name]

Where

string is a string expression.

queue_name is a string expression consisting of 1 to 8 alphanumeric characters. This
is optional.

Function

The QUEUE statement adds string to queue_name on a first in, first out (FIFO)
basis.

If the specified queue_name is a nonconstant expression, the first 8 characters of the
string are used. If the string is shorter than 8 characters, the available characters
are used. When specifying queue_name with the QUEUE statement, the test/string
item will be placed in a queue by the exact name as queue_name. If you specify a
string variable, it cannot be the name of one of the STL reserved variables (for
example, BUFFER). If not specified, queue_name defaults to a unique value assigned
to each device.

Examples
queue ’AAAA’ TO ’Queue1’ /* Places ’AAAA’ in queue ’Queue1’ */
queue ’BBBB’ TO ’QUEUE1’ /* Places ’BBBB’ in queue ’QUEUE1’ */
a = PULL(’QUEUE1’) /* Assigns ’BBBB’ to "a" */

Note: The named queue structure and text/string data items are allocated
dynamically by WSim and deleted as the queue is emptied.

QUIESCE

┌ ┐
QUIESCE │ UNTIL {ONIN [asynchronous_condition]} │

│ {ONOUT [asynchronous_condition]} │
│ {SIGNALED(event_name)} │
! ┘

Where

asynchronous_condition is a valid asynchronous condition. See “Testing
asynchronous conditions” on page 291 for a description of asynchronous
conditions.

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotes. (Strings containing hexadecimal constants are
exempt from this restriction.) If you specify a nonconstant string expression, the
first 8 characters of the string are used. If the string is shorter than 8 characters, the
available characters are used. To satisfy conditions using event names, the first 8
characters must match exactly. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

Chapter 25. Reference to STL statements 425

Function

The QUIESCE statement stops program execution and quiesces the terminal. You
can optionally specify the conditions under which the terminal is to be released
from its quiesced state.

Examples
quiesce /* Go to sleep. Never wake up. */

quiesce until onin index(screen,’WAKE UP’) > 0
/* Quiesce until the string ’WAKE UP’ */
/* is received. */

Notes
v A quiesced terminal can also be released by the “A resource, RELEASE” operator

command.
v The statement causes a Transmit Interrupt. Thus, all accumulated message data

will be sent.
v If you are in the middle of generating elements of an SNA chain, quiescing the

terminal will not prevent the program from being reentered to generate
subsequent chain elements.

v A simulated TCP/IP device that has been quiesced will not attempt to reconnect
to the specified server after disconnection.

RESET event

RESET event_name [AFTER time [TAG event_tag]]

Where

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotes. (Strings containing hexadecimal constants are
exempt from these restrictions.) If you specify a nonconstant string expression, the
first 8 characters of the string are used. If the string is shorter than 8 characters, the
available characters are used. To satisfy conditions using event names, the first 8
characters must match exactly. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

time is an integer value that indicates the number of seconds that the posting of the
event is to be delayed. It must be an integer expression with a value from 1 to
21474836.

event_tag specifies a “tag” to be assigned to the RESET statement. This tag is only
valid if the time value is also coded. The rules for specifying the event_tag are the
same as those for specifying event_name.

Function

The RESET statement is used to mark the specified event incomplete so that it can
be posted again.

426 WSim Script Guide and Reference

When you specify time and event_tag, you can cancel events that have been
assigned the same tag before the specified time has elapsed. You can assign the
same tag to events that are specified with a POST, QSIGNAL, RESET, or SIGNAL
statement. Thus, you can cancel several events by assigning them the same tag.

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

If an event tag is not specified, a default tag is assigned that has a value that is the
same as the event name.

See “CANCEL” on page 366 for more information about how to use a tag to cancel
events.

Examples
if posted(’MYEVENT’) then /* MYEVENT has been posted. */

do
say ’MYEVENT has been posted again’
reset ’MYEVENT’ /* Reset MYEVENT for next posting. */

end

Note

When the STL Translator encounters the RESET keyword by itself in a statement, it
is interpreted as a Reset key simulation statement. When followed by an
expression of any type, the RESET keyword is interpreted as a Reset Event
statement and is processed as such. See “RESET key” for a description of the Reset
key simulation statement.

RESET key

RESET

Function

The RESET statement simulates the action of the Reset key on 3270 display
terminals. The statement is valid for simulation of these terminals only.

Examples
type ’Now is time’ /* Enter text into current field on screen. */
cursor(’left’,4) /* Move back to the ’t’ in ’time’. */
insert /* Get into insert mode. */
type ’the ’ /* Insert ’the ’ before ’time’. */

/* Current field should now contain ’Now is */
/* the time’. */

reset /* Get out of insert mode. */

Note

When the STL Translator encounters the RESET keyword by itself in a statement, it
is interpreted as a Reset key simulation statement. When followed by an
expression of any type, the RESET keyword is interpreted as a Reset Event
statement and is processed as such. See “RESET event” on page 426 for a
description of the Reset Event statement.

Chapter 25. Reference to STL statements 427

RETURN

RETURN

Function

The RETURN statement returns control to the point where the last CALL statement
was issued. It is ignored if no CALL is outstanding.

An ENDTXT statement functions as a RETURN statement if WSim encounters it
during execution while a CALL or EXECUTE is outstanding.

If the CALL was issued as an asynchronous subset statement, control returns to the
statement that would have been executed next if the CALL had not been issued. In
Example 2 below, for instance, the ONIN condition will be activated when “proc1”
is processed and will be active when “proc2” is called. If the ONIN condition is
satisfied during the Transmit Interrupt of “proc2,” the procedure “newhello” will
be called. When the Transmit Interrupt ends, “newhello” will be executed. When
the RETURN statement in “newhello” is executed, control returns to the statement
labeled “next” in “proc2” since this statement would have been executed after the
Transmit Interrupt if the asynchronous CALL had not been encountered.

Examples
Example 1

if no_more_data then /* More data to process? */
return /* Return to calling procedure. */

else /* More data to process. */
&#8942;

Example 2

proc1: msgtxt
onin index(data,’Hello’) > 0 then call newhello
&#8942;
call proc2
endtxt

proc2: msgtxt
type ’Are you there?’
transmit and wait until onin
next: say ’The Transmit Interrupt has ended.’
endtxt

newhello: msgtxt
number_of_hellos = number_of_hellos + 1
return
endtxt

SAY

SAY message [TYPE ’ABRHD’]

428 WSim Script Guide and Reference

Where

message is a string expression.

Function

The SAY statement writes message to the operator console. The string that you
specify can be any length; however, a maximum of 100 characters will be
displayed.

If TYPE 'ABRHD' is specified, message will be written with an abbreviated header
containing only a message number preceding the data. If omitted, message is
written with network and device or LU names included in the header and using
message number ITP113I or ITP137I.

Examples
say ’Beginning to execute procedure’ msgtxtid()
say ’Beginnning to execute procedure’ msgtxtid() type ’ABRHD’

Note: When using the SAY statement, make sure that the system console is not
overloaded with these messages.

SCROLL

SCROLL {UP}
{DOWN}

Function

The SCROLL statement simulates the Scroll key on 3270 display terminals. The
statement is valid for simulation of these terminals only.

The UP or DOWN keyword specifies whether the displayed data is to be scrolled
up or down in relation to the current viewport.

Examples
scroll up /* Scroll up within the current presentation space. */

SELECT

SELECT
WHEN condition THEN[;] statement

┌ ┐
│ WHEN condition THEN[;] statement │
│ . │
│ . │
│ . │
└ ┘

OTHERWISE[;] statement
END

Where

condition is any valid STL condition.

Chapter 25. Reference to STL statements 429

statement is a single statement or a statement group, such as DO, SELECT, or
IF/THEN/ELSE.

Function

The SELECT statement is used conditionally to execute one of several alternative
statements.

WSim evaluates each condition following a WHEN in turn. If a condition is true,
WSim executes the statement (or statement group) following the THEN and control
passes to the END statement. If a condition is false, control passes to the next
WHEN statement.

If none of the WHEN conditions are true, control passes to the statement (or
statement group) following the OTHERWISE.

Examples
data_length = length(message)
select

when data_length > 100 then
say ’Data is longer than 100 characters’

when data_length > 50 then
say ’Data is longer than 50 characters and shorter than 101 characters’

when data_length > 10 then
say ’Data is longer than 10 characters and shorter than 51 characters’

otherwise
say ’Data is shorter than 11 characters’

end

Note

You must include at least one WHEN statement and an OTHERWISE statement in
a SELECT group.

SETRH

SETRH [TYPE request_type] [CHAIN chain_position] [ON(rh_settings)] [OFF(rh_settings)]

Note: You must code at lease one of the operands (TYPE, CHAIN, ON, or OFF).

Where

request_type is a string constant that can have the following values:

DFC Data flow control

FM FM data

NC Network control

SC Session control.

This is used to specify the type of request being built. There is no default value for
request_type. This parameter is optional. You can use uppercase or lowercase letters.
The string constant must be enclosed in single or double quotation marks.

chain_position is a string constant that can have the following values:

430 WSim Script Guide and Reference

FIRST First RU of chain

MIDDLE Middle RU of chain

LAST Last RU of chain

ONLY Only RU of chain.

If 'FIRST' is specified, ON(EXC) and OFF(CDI) are set to default values. There is no
default value for chain_position. This parameter is optional. You can use uppercase
or lowercase letters. The string constant must be enclosed in single or double
quotation marks.

rh_settings can be one or more RH keywords, separated by commas. The following
list defines the valid RH keywords:

BB Set begin bracket.

CDI Set change direction.

CEB Set conditional end bracket.

DR1 Definite response 1 requested.

DR2 Definite response 2 requested.

EB Set end bracket.

EXC Exception response requested.

FMI This RU is formatted. This is ignored for a VTAMAPPL LU.

QRI Set queued response indicator.

RESP The data is a response.

SNI This RU contains sense data.

This is how the STL SETRH statement maps over to SNA Formats bits:

WSim SNA Terminology

BB BBI

CDI CDI

CEB CEBI

DR1 DR1I

DR2 DR2I

EB EBI

EXC ERI/RTI 8

FMI FI

QRI QRI

RESP RRI

SNI SDI

Function

The SETRH statement performs the following functions:

8. The ERI and RTI bits are the same bit.

Chapter 25. Reference to STL statements 431

v Modifies the SNA request/response header built for the next message sent based
on the “on” or “off” settings. For example, the bits in the RH represented by the
“on” RH settings will be set on and those represented by the “off” RH settings
will be set off.

v Optionally specifies chaining of transmitted messages.

This statement only affects the next transmitted message, except in the case where
chaining is specified. If chaining is specified, then all messages will be considered a
part of the chain until the last RU in the chain is sent.

Examples
/* Set begin bracket */
/* and specify that this is a data flow control request */

setrh type ’DFC’ on(bb)
type ... /* Enter the data to send */
transmit /* Send the data with the */

/* modified RH values */

/* Indicate that this is the first RU in a chain of RUs */

setrh chain ’FIRST’
type ... /* Enter the data to send */
transmit /* Send the data with the */

/* modified RH values */

Notes
v This statement is valid only for SNA simulations.
v The SETRH is overridden for all SNACMNDs except for LUSTAT. For LUSTAT,

the following RH settings cannot be changed: TYPE is DFC, CHAIN is ONLY,
FMI is ON, RESP is OFF, and SNI is OFF.

SETTH

SETTH SEQNO sequence_number

Note: The SEQNO operand is required.

Where

sequence_number is an integer constant that specifies the value of the transmission
header sequence number field.

Note: Changing the sequence number field can cause an error in the access
method of the system under test.

Function

The SETTH statement modifies the SNA request/response header built for the next
message sent based on the “on” and “off” settings.

This statement only affects the next transmitted message. It is ignored for 3270
SNA and 5250 terminals, and for CPI-C transaction programs.

432 WSim Script Guide and Reference

Examples
/* Set transaction header sequence number */

setth seqno 20
type ... /* Enter the data to send */
transmit /* Send the data with the */

/* modified TH values */

Note

This statement is valid only for SNA simulation.

SIGNAL

SIGNAL event_name [AFTER time [TAG event_tag]]

Where

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotes. (Strings containing hexadecimal constants are
exempt from this restriction.) If you specify a nonconstant string expression, the
first 8 characters of the string are used. If the string is shorter than 8 characters, the
available characters are used. To satisfy conditions using event names, the first 8
characters must match exactly. If you specify a string variable, it cannot be the
name of one of the reserved variables (for example, BUFFER).

time is an integer value that indicates the number of seconds that the posting of the
event is to be delayed. It must be an integer expression with a value from 1 to
21474836.

event_tag specifies a “tag” to be assigned to the SIGNAL statement. This tag is only
valid if the time value is also coded. The rules for specifying the event_tag are the
same as those for specifying event_name.

Function

The SIGNAL statement signals the named event. A signal affects all terminals in
the network; therefore, all outstanding ON SIGNALED conditions for the named
event will be satisfied.

Note: See “Specifying variable event names with a time delay” on page 306 for
information about specifying variable event names with a time delay.

When you specify time and event_tag, you can cancel events that have been
assigned the same tag before the specified time has elapsed. You can assign the
same tag to events that are specified with a POST, QSIGNAL, RESET, or SIGNAL
statement. Thus, you can cancel several events by assigning them the same tag.

If an event tag is not specified, a default tag will be assigned that has a value that
is the same as the event name.

See “CANCEL” on page 366 for more information about how to use a tag to cancel
events.

Chapter 25. Reference to STL statements 433

Examples
signal ’GOODTEST’

SNACMND

SNACMND(type,[arg1...arg10])

Where

type is one of the keywords as follows:

BID, BIS, CANCEL, CHASE, CLEAR, INITSELF, LUSTAT, QUEC, RELQ, RSHUTD,
RTR, SBI, SDT, SHUTD, SIGNAL, STSN, TERMSELF, or UNBIND.

This is used to specify the type of SNA command to be simulated.

Note: Coding a type of INITSELF or TERMSELF on the SNACMND produces the
same results as coding the INITSELF or TERMSELF statement, respectively.

arg1,...,arg5 depends on the type specified. The table below tells what arguments
each type of SNA command expects - required arguments are asterisked. The list
following the table shows the values that are expected for each argument.

Table 15. Argument List for SNACMND Statement Based on Command Type

Type
1st
Argument

2nd
Argument

3rd
Argument

4th
Argument

5th
Argument

BID

BIS

CANCEL

CHASE

CLEAR

INITSELF resource* mode user_data log_byte

LUSTAT sense log_byte

QUEC

RELQ

RIDISC

RNDISC

RSHUTD

RTR

SBI

SDT

SHUTD

SIGNAL sense log_byte

STSN pseqact pseqval sseqact sseqval log_byte

TERMSELF resource log_byte

UNBIND sense son

434 WSim Script Guide and Reference

Argument Format

resource is a string expression. If resource is a string constant expression, it must
be 1 to 8 alphanumeric characters and must not contain blanks. The
characters must be enclosed in single or double quotation marks.
String constant expressions containing hexadecimal strings are exempt
from this restriction. The STL Translator will translate all lowercase
characters to uppercase in these constants.

mode is a string expression. If mode is a string constant expression, it must be
1 to 8 alphanumeric characters and must not contain blanks. The
characters must be enclosed in single or double quotation marks.
String constant expressions containing hexadecimal strings are exempt
from this restriction. The STL Translator will translate all lowercase
characters to uppercase in these constants.

user_data is a string expression. The length of user_data should not exceed 255
characters although the STL Translator permits longer strings. A
maximum of 255 characters will be sent.

log_byte is a 1-byte string constant or a string expression.
Note: Only the first character or first two hexadecimal digits of the
string expression are used.

pseqact Is a string constant that can have the following values:

IGNORE
Specifies that this STSN command is to be ignored.

SET Specifies that the primary-to-secondary sequence number of
the secondary end user is to be set to pseqval operand value.

TEST Specifies that the secondary end user must return its
primary-to-secondary sequence number in the response RU.

TESTSET
Specifies that the primary-to-secondary sequence number of
the control program (CP) manager is to be set to the pseqval
operand value, and the secondary end user is to compare that
value against its own and respond accordingly.

pseqval Is an integer constant with a value from 0 to 65535.

sseqact Is a string constant that can have the following values:

IGNORE
Specifies that this STSN command is to be ignored.

SET Specifies that the primary-to-secondary sequence number of
the secondary end user is to be set to sseqval operand value.

TEST Specifies that the secondary end user must return its
primary-to-secondary sequence number in the response RU.

TESTSET
Specifies that the primary-to-secondary sequence number of
the control program (CP) manager is to be set to the sseqval
operand value, and the secondary end user is to compare that
value against its own and respond accordingly.

sseqval Is an integer constant with a value from 0 to 65535.

log_byte Is a 1-byte string constant or a string expression.

sense is a 8-digit hexadecimal string constant.

son is a 2-digit hexadecimal string constant.

Chapter 25. Reference to STL statements 435

Function

The SNACMND statement builds an SNA command to be sent by the simulated
logical unit and sets the SNA headers in the message to indicate the presence of
the command.

Each type of SNA command has a function, that is, it corresponds to a particular
SNA command. The function of each type of SNA command is as follows:

BID Bid

BIS Bracket initiation stopped

CANCEL Cancel chain

CHASE Chase responses

CLEAR Clear

INITSELF Initiate self, format 0

LUSTAT LU status

QUEC Quiesce at end of chain

RELQ Release quiesce

RSHUTD Request shutdown

RTR Ready to receive

SBI Stop bracket initiation

SDT Start data traffic

SHUTD Shutdown

SIGNAL Signal

STSN Set and test sequence numbers

TERMSELF Terminate self, format 0

UNBIND Unbind session.

The arguments have a unique function for each of the SNA command types. The
function of the arguments are as follows:

resource Specifies the name of the partner LU with which the session is to be
established or terminated.

mode Specifies the name of a mode entry table to be used when
simulating SNA terminals or logical resources.

user_data Specifies unique user information, such as passwords.

log_byte specifies a byte of user data to be associated with all data
transmitted and received. The log_byte remains active until data is
“typed” and transmitted with a TRANSMIT statement or until an
INITSELF, TERMSELF, or another SNACMND statement is issued.
This byte gives users of the Response Time Utility a way to identify
transactions when gathering statistics by the various “log byte”
categories. The default log_byte is X'00'.

sense Specifies the sense information to be sent with the SNA command
being simulated.

son Specifies the session outage notification (SON) code to be sent with
the command being simulated.

pseqact Specifies the action to be executed by the STSN receiver for the
primary-to-secondary sequence number. The default pseqact value is
SET.

436 WSim Script Guide and Reference

pseqval Specifies the primary-to-secondary sequence number value to be
sent with the STSN. The default pseqval is 0.

sseqval Specifies the secondary-to-primary sequence number value to be
sent with STSN. The default sseqval is 0.

sseqact Specifies the action to be executed by the STSN receiver for the
secondary-to-primary sequence number. The default sseqact value is
SET.

log_byte Specifies the byte of user data to be associated with all data
transmitted and received. The log_byte remains active until data is
"typed" and transmitted with a TRANSMIT statement or until an
INITSELF, TERMSELF, or another SNACMND statement is issued.
This byte gives users of the Response Time Utility a way to identify
transactions when gathering statistics by the various "log_byte"
categories. The default log_byte is X'00'.

Examples
/* Send an Unbind SNA command to Unbind the session. */
/* Send a sense code of 08010002. */

snacmnd(unbind,’08010002’x)

/* Send a command to start the data traffic. */

snacmnd(sdt)

/* Send an SNA attention key. */

snacmnd(signal,’00010000’x)

log_byte = ’m’

/* Send an SNA attention key, setting the log */
/* byte to ’m’ using the variable log_byte. */

snacmnd(signal,’00010000’x,log_byte)

Notes
v This statement is valid only for SNA simulation.
v The SNACMND statement causes a Transmit Interrupt. Thus, all accumulated

message data will be sent.
v The SETRH is overridden for all SNACMNDs except for LUSTAT. For LUSTAT,

the following RH settings cannot be changed: TYPE is DFC, CHAIN is ONLY,
FMI is ON, RESP is OFF, and SNI is OFF.

STRING

STRING [{SHARED|UNSHARED}] variable_list

Where

variable_list is any number of valid STL variable names not previously declared,
separated by commas.

Chapter 25. Reference to STL statements 437

Function

The STRING statement explicitly declares one or more STRING variables, which
may be specified as SHARED or UNSHARED. If the class designation is not
included, the variable will be assigned the UNSHARED class.

Examples
/* Declares the unshared string variables, */
/* "password" and "logon_mode". */

string unshared password, logon_mode

string mydata /* Declares the unshared string variable, */
/* "mydata". */

string shared netdata /* Declares the shared string variable, */
/* "netdata". */

Note

The STRING statement is a declarative statement. You can code it only outside an
STL procedure.

STRIPE

STRIPE stripe_data

Where

stripe_data is a string expression.

Function

The STRIPE statement defines message data to be transmitted to the system under
test by a magnetic stripe reader. This statement is valid for 3270 terminal
simulation only. WSim ignores the STRIPE statement if you use it when simulating
nondisplay terminals.

Examples
stripe ’123456789’ /* Send this string to the host. */

Note

The STRIPE statement causes a Transmit Interrupt. Thus, all accumulated message
data will be sent. See “Interrupting program execution” on page 286 for
information about a Transmit Interrupt.

SUSPEND

┌ ┐
SUSPEND(│ {’RATE’,rate_table_number}[,uti_value] │)

│ {fixed_time} │
│ {random_function} │
└ ┘

438 WSim Script Guide and Reference

Where

rate_table_number is an integer constant expression with a value from 0 to 255.

uti_value is a string constant expression that names a UTI statement in the network
definition.

Note: The name of the network-level UTI is NTWRKUTI.

fixed_time is an integer expression with a value from 0 to 2147483647.

random_function is an instance of the RANDOM function as described in
“RANDOM” on page 481.

Function

The SUSPEND statement suspends normal execution for a simulated terminal for
the specified amount of time. Although normal execution of the procedure is
suspended, all outstanding asynchronous conditions remain active and are tested
as needed. After the suspension interval is complete, WSim continues normal
synchronous execution with the statement following the SUSPEND statement
(unless control has been altered by a CALL asynchronous subset statement).

The value of the SUSPEND argument is multiplied by the terminal's UTI value or
by the value of the UTI specified as an argument to arrive at the suspension
interval (in hundredths of seconds). This value applies to the RATE, fixed time and
random number specifications. If you do not specify an argument, the default
DELAY value for the terminal is used to calculate the suspension interval. If you
specify fixed_time, the value of the integer constant expression is used. If you
specify 'RATE',rate_table_number, a value chosen randomly from the designated rate
table is used. If you specify random_function, the value of the random number
returned by the RANDOM function is used.

Examples
NET1 NTWRK

.

.

.
UTISEC UTI 100

.

.
Deck1: msgtxt

.

.

.
suspend(5,’UTISEC’) /* Suspend execution for 5 seconds */

/* (UTI=UTI value of "UTISEC"). */

suspend(5) /* Suspend execution for 5 seconds */
/* (UTI=100). */

suspend(’rate’,1) /* Select the next value from rate */
/* table 1 and multiply it by the UTI */
/* to arrive at the suspension interval. */

suspend(random(5,10)) /* Suspend for random interval between 5 */
/* and 10 seconds (UTI=100). */

suspend(random(’rn’,4))/* Suspend for random interval based on */
/* RN statement number 4. */

Chapter 25. Reference to STL statements 439

The SUSPEND statement can be useful when waiting for data to arrive at a display
terminal before taking further action, as shown in the following example.
type ’Hello’
transmit /* Notice: There is no WAIT clause on this TRANSMIT. */

/* The normal Transmit Interrupt delay will be taken; */
/* then, normal STL execution will resume. */

/**/
/* The following DO WHILE loop will continue to be executed */
/* while ’Goodbye’ is not on the screen. The screen is */
/* checked every 5 seconds for the string. If it has not */
/* yet been received, execution is suspended for another 5 */
/* seconds. */
/**/
do while index(screen,’Goodbye’) = 0

suspend(5) /* Suspend execution for 5 seconds (UTI=100). */
end

/**/
/* ’Goodbye’ was received. Go on to next activity. */
/**/
&#8942;

Notes
v You can cancel a suspension interval with the CANCEL SUSPEND asynchronous

subset statement. For details, see “CANCEL” on page 366.
v This statement causes a Transmit Interrupt. Thus, all accumulated message data

will be sent.

SYSREQ

SYSREQ

Function

The SYSREQ statement simulates the action of the SYSREQ key on an SNA device.
This statement is only valid for Telnet 3270E and Telnet 5250 simulation.

Examples
sysreq /* Simulate the pressing of the SYSREQ key */

TAB

TAB

Function

The TAB statement simulates the Tab key on 3270 display terminals. The statement
is valid for simulation of these terminals only.

440 WSim Script Guide and Reference

Examples
home /* Move to first input field on screen. */
do i = 2 to 5 /* Tab to the 5th input field. */

tab
end

Note

You can also simulate the action of the TAB key by using the TAB function on a
TYPE statement.

TERMSELF

TERMSELF([resource][,log_byte])

Where

resource is a string expression. If resource is a string constant expression, it must be
from 1 to 8 alphanumeric characters, must not contain blanks, and must be
enclosed in single or double quotation marks. String constant expressions
containing hexadecimal strings are exempt from these restrictions. The STL
Translator will translate lowercase letters to uppercase.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with all data transmitted and received. The log_byte
remains active until data is “typed” and transmitted with a TRANSMIT statement
again or until an INITSELF, TERMSELF, or SNACMND statement is issued. This
byte gives users of the Response Time Utility a way to identify transactions when
gathering statistics by the various user-defined “log_byte” categories. Only the first
character or first two hexadecimal digits of the string expression are used. The
default log_byte is X'00'.

Function

The TERMSELF statement sends TERMINATE SELF format 0 RU terminate
sessions when simulating SNA terminals or logical units (LUs).

resource specifies the name of the partner LU. If resource is not specified, the name
of the LU's current partner is used.

Examples
log_byte = ’m’
if SNA_sense_received then /* Something went wrong. */

do
say luid()’ is terminating session - SENSE received’
termself(’MYAPPL’,log_byte)
quiesce /* Go to sleep. */

end
else

call goodproc

Notes
v The TERMSELF statement causes a Transmit Interrupt. Thus, all accumulated

message data will be sent.

Chapter 25. Reference to STL statements 441

v The TERMSELF statement is identical to specifying a type of TERMSELF on an
SNACMND statement.

TRANSMIT

TRANSMIT [USING aid_key] [LOGGING log_byte]
[AND wait_statement]

Where

aid_key is an Attention Identifier (AID) key name taken from the following list:

CLEAR
CLEARPTN
CMDnn
CURSRSEL
ENTER

HELP
PA1-3
PFnn
PRINT
ROLLDOWN

ROLLUP
SEND
SENDLINE
SENDMSG
SYSREQ

Note: To simulate the action of the SYSREQ key on a Telnet 3270E or Telnet 5250
device, use the SYSREQ device key statement.

nn is an integer from 1 to 24 used to identify command and PF keys.

log_byte is a 1-byte string constant or a string expression that specifies a byte of
user data to be associated with all data transmitted and received. The log_byte
remains active until data is “typed” and transmitted with a TRANSMIT statement
again or until an INITSELF, TERMSELF, or SNACMND statement is issued. This
byte gives users of the Response Time Utility a way to identify transactions when
gathering statistics by the various user-defined “log_byte” categories. Only the first
character or first two hexadecimal digits of the string expression are used. The
default log_byte is X'00'.

wait_statement is a valid STL WAIT statement as described in “WAIT” on page 446.

Function

The TRANSMIT statement directs WSim to transmit data previously “typed” at a
simulated terminal with a TYPE statement. Optionally, the TRANSMIT statement
can specify the AID key to be associated with the transmitted data and an
asynchronous condition that must be satisfied before normal execution resumes.

Note: Do not use the TRANSMIT statement in CPI-C transaction program
simulations. This statement will cause execution of the CPI-C transaction program
to be interrupted. CPI-C transaction programs send messages using the CMSEND
statement.

aid_key specifies the AID generating key to be associated with the transmitted data.
If the “USING aid_key” clause is not included, the default AID of ENTER is used.

wait_statement, when coded, directs WSim not to resume normal STL execution
until the specified wait condition is met. If the “AND wait_statement” clause is not
included, WSim resumes normal STL execution after the Transmit Interrupt for the

442 WSim Script Guide and Reference

terminal expires. For more information about the TRANSMIT statement and the
Transmit Interrupt, see Chapter 20, “Transmitting and receiving messages from an
STL program,” on page 285.

Examples
type ’Hello’

/***/
/* Press PF1. This transmits the "Hello" just entered on */
/* the TYPE statement. Wait until the screen is refreshed */
/* by the application with an ERASEWRITE (’F5’x) command. */
/***/

transmit using PF1 and wait until onin substr(ru,1,1) = ’f5’x

/***/
/* Press PF3 and set the log byte to be the character ’f’. */
/***/

transmit using PF3 logging ’f’

type ’Goodbye’

log_byte = ’m’
type ’Transmit this message using a variable log byte.’

/***/
/* This transmits the message on the previous type */
/* statement and sets the log byte to ’m’ using the */
/* variable log_byte. */
/***/
transmit logging log_byte

Note

If the TRANSMIT statement is encountered and no data has been “typed” with a
TYPE statement, only the AID indicator will be transmitted.

TYPE

TYPE data

Where

data is a string expression.

Function

The TYPE statement defines message data to be transmitted to the system under
test by the simulated terminal. Multiple TYPE statements can be used to “build”
complex messages. For information about defining messages, see Chapter 19,
“Generating messages for an STL program,” on page 267.

Examples
type ’Hello, my name is ’luid()’.’
if a = 1 then

do
a = a + 1

Chapter 25. Reference to STL statements 443

type ’ What is your name?’
end

else
type ’ How are you?’

transmit and wait until onin substr(ru,1,5) = ’Hello’

When A is 1, the preceding example will transmit the message, “Hello, my name is
LU1. What is your name?” When A is not 1, the following message will be
transmitted: “Hello, my name is LU1. How are you?”

Notes:

v Data typed for display devices represents data being entered by an operator into
a display buffer. The actual data transmitted is then constructed by WSim for the
specific display simulation type.

v Data typed for TCP/IP FTP Client devices represents a local FTP command. The
data to be transmitted to the server, if any, is then constructed by WSim.

v Do not use the TYPE statement for CPI-C transaction program simulations.
Transaction program message data is defined by setting up a save area that
represents the send buffer.

USEREXIT

USEREXIT(module_name[,parm_list])

Where

module_name is a string constant expression. It must be 1 to 8 alphanumeric
characters and must conform to standard JCL member naming conventions. That
is, each character must be one of: A-Z, a-z, #, $, @, 0-9, with the first character
alphabetic. The characters must be enclosed in single or double quotation marks.

parm_list is a string constant expression. The length of parm_list should not exceed
100 characters.

Function

The USEREXIT statement invokes a user exit routine during the execution of the
program. It allows the exit routine to produce messages and control execution of
the program by setting return codes.

The module_name specifies the member (user exit load module) in the load library
that was loaded during initialization and is to gain control when this statement is
encountered during program execution.

Note: You should concatenate the user exit data sets to the STEPLIB DD JCL
statement.

parm_list specifies the parameters to be passed to the user exit when it is called.

The user exit routine must set one of the following return codes in register 15 to
indicate the action to be taken upon completion of the user exit:

Code Meaning

444 WSim Script Guide and Reference

0 Continue executing the program as if the user exit had not been called.

4 Continue executing the program as if the user exit had not been called.

Note: Unless you included Scripting Language statements directly using
@GENERATE, codes 0 and 4 result in the same action for STL programs.

8 A message was created by the user exit. Continue processing as if the
message had been generated by a TYPE statement.

Note: STL statements that cause a Transmit Interrupt or another TYPE
statement following the user exit will cause this message to be transmitted.

12 Put the terminal in the wait state. If a message was created before calling
the exit routine but has not yet been transmitted, transmit it now.

16 Do not put the terminal in the wait state. If a message was created before
calling the exit routine but has not yet been transmitted, transmit it now.

Note: Refer to , SC31-8950 for more information on user exit routines.

Examples
userexit(’MYEXIT’,’NOWAIT’)

UTI

UTI uti_name

Where

uti_name is the 1- to 8-character string constant expression corresponding to the
name coded on a UTI network definition statement. You can use uppercase or
lowercase letters. The uti_name must be enclosed in single or double quotation
marks.

Note: The name of the network-level UTI is NTWRKUTI.

Function

You use the UTI statement to change the individual user time interval (IUTI) for
your terminal. The new IUTI value for the terminal will be the current value of the
UTI identified by uti_name.

Examples
uti ’UTI01’ /* Make UTI01 the terminal’s current UTI. */
uti ’NTWRKUTI’ /* Change back to the network UTI value. */

VERIFY

VERIFY simple_condition [FOR description]

Chapter 25. Reference to STL statements 445

Where

simple_condition is of the form:

actual_expression relational_operator expected_expression

The actual_expression represents the actual value to be verified and
expected_expression represents the value that the actual value is expected to
contain.relational_operator is a valid STL relational operator. The record is written
only if the condition is true. See “Using conditions and relational operators” on
page 261 for more information on simple conditions andrelational_operator.
description is a string expression. This gives an identifier to VRFY (VERIFY) records
in the log data set. The Loglist Utility can then use this description to group
common records in the loglist output. The description you specify can be any
length; however, only a maximum of 50 characters are logged.

Function

The VERIFY statement creates a verify record in the log data set, which is used by
the Loglist Utility to produce Verification Reports. See , SC31-8947 for more
information on the purpose and format of these reports.

Note: Verification Reports reference resources, counters, save areas, and switches.
Therefore, refer to the variable dictionary to determine how STL variables map to
their associated resources.

Examples
/* Serial numbers, which are found at offset 30 on the screen */
/* cannot contain a "9" as the first digit. If this occurs */
/* then log a verify record. The description "Serial number */
/* in error" can be used when looking at the Verification */
/* Summary Report to determine how many errors of this nature */
/* occurred. */

verify substr(screen,30,1) = ’9’ for ’Serial number in error’

verify amount = 0 /* Log verify record if "amount" equals zero. */

WAIT

┌ ┐
WAIT │ UNTIL {ONIN [asynchronous_condition]} │

│ {ONOUT [asynchronous_condition]} │
│ {POSTED(event_name)} │
│ {SIGNALED(event_name)} │
└ ┘

Where

asynchronous_condition is a valid asynchronous condition. See “Setting up
asynchronous conditions” on page 299 for a description of asynchronous
conditions. event_name is a string expression that specifies the name of an event. If
it is a string constant expression, event_name must be 1 to 8 alphanumeric
characters and enclosed in single or double quotes. (Strings containing hexadecimal
constants are exempt from this restriction.) If you specify a nonconstant string
expression, the first 8 characters of the string are used. If the string is shorter than
8 characters, the available characters are used. If you specify a string variable, it

446 WSim Script Guide and Reference

cannot be the name of one of the reserved variables (for example, BUFFER).

Function

The WAIT statement stops program execution and places the terminal in a wait
state. You may optionally specify those asynchronous conditions under which
WSim releases the terminal from its wait state. This statement enables you to
simulate the action of a terminal operator waiting for a reply before entering the
next message.

The terminal is released from the wait state under the following conditions:
v If WAIT UNTIL ONIN│ONOUT asynchronous_condition is used, the terminal will be

released from its wait state when the specifiedasynchronous_condition is satisfied.

v If WAIT UNTIL POSTED(event_name) is used, the terminal will be released from its
wait state when the specified event is posted.

v If WAIT UNTIL SIGNALED(event_name) is used, the terminal will be released from
its wait state when the specified event is signaled or qsignaled.

v A BIND SNA RU is received.
v Another procedure is called as the result of an ONIN, ONOUT, or ON

SIGNALED condition being satisfied.
v Automatic terminal recovery is entered.
v The operator enters an S (Start) command.
v The operator enters an F (Console Recovery) command, causing the terminal to

enter terminal recovery.

An ONIN or ONOUT portion of the WAIT statement does not have to include a
condition. The ONIN or ONOUT keyword may end the statement. Any incoming
(ONIN) or outgoing (ONOUT) message will satisfy such a null condition.

Notes:

v The WAIT statement can also be coded as a clause on the TRANSMIT statement.
v This statement causes a Transmit Interrupt. Thus, all accumulated message data

will be sent.

Examples
wait until onin index(ru,’WELCOME’) > 0

/* Wait for WELCOME message. */

wait until posted(’MYEVENT’) /* Wait until MYEVENT is */
/* posted. */

transmit and wait until signaled(’MYEVENT’)
/* Transmit data and wait */
/* until MYEVENT is signaled. */

wait until onin /* Wait until the next */
/* message is received. */

transmit and wait until onin /* Transmit data and wait */
/* until the next message is */
/* received. */

Note

A WAIT statement without an UNTIL clause places the terminal in a wait state
without any obvious means of getting out. Any of the conditions listed above will

Chapter 25. Reference to STL statements 447

reset the state. For this reason, you should normally include an UNTIL clause on a
WAIT statement unless you have ONIN, ONOUT, ON SIGNALED, or other ways
to reset the state.

448 WSim Script Guide and Reference

Chapter 26. Reference to STL functions

This chapter describes the syntax and usage of the STL functions. For a general
explanation of STL functions, see “Using functions” on page 249.

APPCLUID

APPCLUID()

Results

String

Function

The APPCLUID function returns the name of the APPC LU on which the
transaction program is defined. The name of the APPC LU is the name field of the
APPCLU statement with trailing blanks removed.

Examples
say ’The name of the APPCLU is: ’appcluid()’.’

Note

This function is intended for use with CPI-C simulations; results will be the null
string if used in other simulations.

ATTR3270

ATTR3270(screen_location[,length])

Where

screen_location is one of several methods of identifying a location on a simulated
screen.

length is an integer constant expression with a value between 1 and 11.

Results

String

Function

The ATTR3270 function returns a string containing information about the standard
field, extended field, and character attribute values associated with a particular

© Copyright IBM Corp. 1983, 2015 449

screen location. The length of the returned string will be from 1 to 11 characters,
depending on the value specified by the length argument. If length is not specified,
9 characters will be returned.

The screen_location can be specified in one of the following ways:
v The screen_position is an integer expression with a value from 1 to 32767. This

number is the position on the screen being queried (the first screen position is 1).
For example, you can use the position in this way:
attributes = attr3270(159,9) /* Assign the attributes of */

/* screen position 159 to */
/* variable "attributes". */

a = 159 /* Use a variable as a screen */
attributes = attr3270(a,9) /* position. */

a = 2 /* Use an integer expression */
attributes = attr3270(a*11,1) /* as a screen position. */

v Use COFF()[±{offset│(offset)}] to specify a screen location relative to the current
cursor offset. If an increment or decrement is not specified, the position to be
queried is the current cursor position. If an increment or decrement is specified,
a screen position beyond (+) or before (-) the cursor position will be queried.
If offset is not enclosed in parentheses, it must be either an integer constant or an
integer variable. If it is enclosed in parentheses, it can be any integer expression.
Its value must be from 0 to 32766.
The following examples show how to use this function to specify the screen
location.
attributes = attr3270(coff()) /* Assign the attributes of */

/* the current cursor’s */
/* location to "attributes". */

cursor(100)
attributes = attr3270(coff()+8) /* Assign the attributes */

/* of screen offset 108 to */
/* "attributes". */

cursor(100)
attributes = attr3270(coff()+(6+2),3)

/* Assign the attributes */
/* of screen offset 108 to */
/* "attributes". Only 3 */
/* characters of attribute */
/* information will be */
/* returned. */

cursor(100)
offset = 102
attributes = attr3270(coff()+offset) /* Set the attributes of */

/* screen offset 202 to */
/* "attributes". */

v Use LENGTH(SCREEN)[-{decrement│(decrement)}] to specify a screen location
relative to the end of the screen. If decrement is not specified, the last screen
position will be queried. If decrement is specified, the screen location decrement
number of positions before the end of the screen will be queried.
If the decrement is not enclosed in parentheses, it must be either an integer
constant or an integer variable. If it is enclosed in parentheses, it can be any
integer expression. Its value must be from 0 to 32766.
The following examples show how to use the end of the screen to define the
screen location.

450 WSim Script Guide and Reference

attributes = attr3270(length(screen))
/* Assign the attributes */
/* of the last screen */
/* location to "attributes". */

attributes = attr3270(length(screen)-40)
/* Assign the attributes */
/* of the screen location */
/* 40 characters from the */
/* end of the screen to */
/* "attributes". */

offset = 35
attributes = attr3270(length(screen)-(offset*2))

/* Set the attributes of the */
/* screen location that is */
/* 70 characters from the */
/* end of the screen to */
/* "attributes". */

v Use ROWCOL(row_number,col_number) to specify the row and column numbers
of the screen location to be queried. row_number and col_number must be integer
expressions with a value from 1 to 255.
The following examples show how to specify the screen location using a row
and column location.
attributes = attr3270(rowcol(1,1)) /* Assign the attributes */

/* of the first screen */
/* location to "attributes". */

a = 12; b = 40
attributes = attr3270(rowcol(a,b)) /* Assign the attributes of */

/* the screen location at */
/* row 12, column 40 to */
/* "attributes". */

The ATTR3270 function returns up to eleven EBCDIC characters. Table 16 explains
the meanings of these characters.

Table 16. Definitions of EBCDIC characters returned by ATTR3270

Byte Defines Values

1 Attribute Information
E = location specification error

0 = unformatted screen, default field
and actual character attribute
values will be generated

1 = formatted screen, no field attribute
defined at specified location, actual
field and character attribute values
will be generated

2 = formatted screen, field attribute
defined at specified location, actual
field and default character attribute
values will be generated

2 Standard Field Attribute
x = EBCDIC translated standard field

attribute character when byte 1 is
set to 1 or 2.
Note: A blank will be generated
when byte 1 is set to E or 0.

Chapter 26. Reference to STL functions 451

Table 16. Definitions of EBCDIC characters returned by ATTR3270 (continued)

Byte Defines Values

3 Highlighting Field Attribute
N = no extended attribute buffer or byte

1 set to E

0 = default, normal highlighting

1 = blinking

2 = reverse image

3 = underlined

4 Highlighting Attribute Character
N = no extended attribute buffer or byte

1 set to E

0 = default, field defined

1 = blinking

2 = reverse image

3 = underlined

5 Color Field Attribute
N = no extended attribute buffer or byte

1 set to E

0 = default, normal color

1 = blue

2 = red

3 = pink

4 = green

5 = turquoise

6 = yellow

7 = white

6 Color Character Attribute
N = no extended attribute buffer or byte

1 set to E

0 = default, field defined

1 = blue

2 = red

3 = pink

4 = green

5 = turquoise

6 = yellow

7 = white

452 WSim Script Guide and Reference

Table 16. Definitions of EBCDIC characters returned by ATTR3270 (continued)

Byte Defines Values

7 Character Set Field Attribute
N = no extended attribute buffer or byte

1 set to E

0 = default, base character set

1 = APL

2 = PSA

3 = PSB

4 = PSC

5 = PSD

6 = PSE

7 = PSF

8 = DBCS

8 Character Set Character Attribute
N = no extended attribute buffer or byte

1 set to E

0 = default, field defined

1 = APL

2 = PSA

3 = PSB

4 = PSC

5 = PSD

6 = PSE

7 = PSF

8 = DBCS

9 Field Validation Field Attribute
N = field validation not supported or

byte 1 set to E

0 = default, no field validation specified

1 = trigger

2 = mandatory enter

3 = trigger and mandatory enter

4 = mandatory fill

5 = mandatory fill and trigger

6 = mandatory fill and mandatory enter

7 = mandatory fill, mandatory enter,
and trigger

10 Field Outlining Definition
N = field outlining not supported or

byte 1 set to E

0–9, A–F =
field outlining bit settings

Chapter 26. Reference to STL functions 453

Table 16. Definitions of EBCDIC characters returned by ATTR3270 (continued)

Byte Defines Values

11 SO/SI Operator Creation
Attribute N = DBCS not supported or byte 1 set

to E

0 = SO/SI creation by operator not
enabled

1 = SO/SI creation by operator enabled

Examples
attributes = attr3270(coff()) /* Get attributes of */

/* cursor location. */
if substr(attributes,3,1) = ’1’ & , /* If cursor is blinking */

substr(attributes,5,1) = ’2’ then /* and red, say so. */
say ’The cursor is currently in a BLINKING RED field.’

else /* Otherwise, the cursor */
/* is not in a blinking, */
/* red field. */

&#8942;

Restrictions on use of ATTR3270 function in asynchronous
conditions

The ATTR3270 function returns a string constant that can usually be used wherever
string constants are valid. There are, however, some restrictions on the use of this
function within asynchronous conditions. They are the following:
v If you use the COFF(), LENGTH(SCREEN), or ROWCOL(row,column) form of

screen_location, you cannot specify an integer expression that contains one or
more variables.

v If you use the screen_position form of screen_location, you can specify only integer
constant expressions.

The following examples show valid and invalid uses of the ATTR3270 function in
asynchronous conditions:
offset = 45
row = 23
column = 67

/**/
/* VALID uses of ATTR3270 in an asynchronous condition. */
/**/

onin attributes = attr3270(108,4) then found = on
onin attributes = attr3270(coff()+offset) then found = on
onin attributes = attr3270(length(screen)-(13*45)) then found = on
onin attributes = attr3270(rowcol(row,column),7) then found = on

/**/
/* INVALID uses of ATTR3270 in an asynchronous condition. */
/**/

onin attributes = attr3270(offset) then found = on
/* The specification for screen_location must be an */
/* integer constant expression. */

onin attributes = attr3270(coff()-(offset+4),2) then found = on
onin attributes = attr3270(rowcol(row+8,column-10)) then found = on

/* The COFF(), LENGTH(SCREEN), and ROWCOL(row,col) */
/* specification for screen_location cannot */
/* represent an integer expression containing one */

454 WSim Script Guide and Reference

/* or more variables. In the above examples, the */
/* variables offset, row, and column are used as */
/* part of an expression. */

BITAND

BITAND (string1[,[string2] [,pad]])

Where

string1 is a string expression

string2 is a string expression. This is optional.

pad is a 1-character string constand or a 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The BITAND function returns a string composed of the string1 and string2 input
strings logically AND'ed together, bit by bit. The length of the result is the length
of the longer of the two strings. The shorter of the two strings is extended with the
pad character on the right before carrying out the logical operation. The default for
string2 is the null string and the default for pad is X'FF'.

Examples
a = BITAND(’55AA’x,’FF88’x) /* Assigns ’5588’x to "a" */
b = BITAND(’COLORADO’,’FF’x,’BF’x) /* Assigns ’Colorado’ to "b" */

Note: The BITAND function cannot be used in asynchronous conditions.

BITOR

BITOR(string1[,[string2][,pad]])

Where

string1 is a string expression.

string2 is a string expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Chapter 26. Reference to STL functions 455

Results

String

Function

The BITOR function returns a string composed of the string1 and string2 input
strings logically inclusive-OR'ed together, bit by bit. The length of the result is the
length of the longer of the two strings. The shorter of the two strings is extended
with the pad character on the right before carrying out the logical operation. The
default for string2 is the null string and the default for pad is X'00'.

Examples
a = BITOR(’152535’x,’22’x) /* Assigns ’372535’x to "a" */
b = BITOR(’Barney’,,’40’x) /* Assigns ’BARNEY’ to "b" */
c = BITOR(’112233’x,’66’x,’88’x) /* Assigns ’77AABB’x to "c" */

Note: The BITOR function cannot be used in asynchronous conditions.

BITXOR

BITXOR(string1[,[string2][,pad]])

Where

string1 is a string expression.

string2 is a string expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The BITXOR function returns a string composed of the string1 and string2 input
strings logically eXclusive-ORed together, bit by bit. The length of the result is the
length of the longer of the two strings. The shorter of the two strings is extended
with the pad character on the right before carrying out the logical operation. The
default for string2 is the null string and the default for pad is X'00'.

Examples
a = BITXOR(’1211’x,’22’x) /* Assigns ’3011’x to "a" */
b = BITXOR(’1111’x,’444444’x,’40’x) /* Assigns ’555504’x to "b" */
c = BITXOR(’AAAA’x,,’FF’x) /* Assigns ’5555’x to "c" */

Note: The BITXOR function cannot be used in asynchronous conditions.

456 WSim Script Guide and Reference

B2X

B2X(binary_string)

Where

binary_string is a string expression containing only '0's or '1's.

Results

String

Function

The B2X function returns a string in character format, that represents binary_string
converted to hexadecimal. It can be any length. You can optionally include blanks
in binary_string (at four-digit boundaries only, not leading or trailing) to aid
readability; they are ignored. The returned string uses uppercase alphabetics for
the values A-F, and does not include blanks.

If binary_string is the null string or a string formatted other than as described
above, B2X returns a null string. If the number of binary digits in binary_string is
not a multiple of four, then up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Examples
a = B2X(’10101010’) /* Assigns ’AA’ to "a" */
b = B2X(’1 0011 1100’) /* Assigns ’13C’ to "b" */
c = B2X(’10001110 0111’) /* Assigns ’8E7’ to "c" */

Note: The B2X function cannot be used in asynchronous conditions.

CCOL

CCOL()

Results

Integer

Function

The CCOL function returns the column number of the current cursor position for
display terminals. The first column on the screen is column number 1.

Examples
a = ccol() + 5 /* Set "a" to the cursor column plus 5. */

Chapter 26. Reference to STL functions 457

Note

This function returns unpredictable results for nondisplay terminals.

CENTER

CENTER(string,length[,pad])

Where

string is a string expression.

length is an integer expression with a value from 1 to 32767.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The CENTER function returns a string of length length with string centered in it,
with pad characters added as necessary on both ends. If string is longer than length,
it is truncated at both ends to fit. If an odd number of characters are truncated or
added, the right-hand end loses or gains one more character than the left-hand
end. The default value for pad is a blank (X'40').

Examples
a = CENTER(’abc’,5) /* Assigns ’ abc ’ to "a" */
b = CENTER(’abcdef’,10,’C1’x) /* Assigns ’AAabcdefAA’ to "b" */
c = CENTER(’abcdefg’,4) /* Assigns ’bcde’ to "c" */

Note: The CENTER function cannot be used in asynchronous conditions.

CHAR

CHAR(number[,length])

Where

number is an integer expression.

length is an integer constant expression with a value from 1 to 10.

Results

String

458 WSim Script Guide and Reference

Function

The CHAR function converts an integer value into its EBCDIC character
representation and returns the converted string. The length of the returned string is
determined by length.

If the converted number is longer than length, only the rightmost digits will be
returned. If the converted number is shorter than length, the returned value will be
padded with zeros on the left.

If length is not specified, the converted value will be returned without leading
zeros.

Examples
i = 57
say ’Variable I is equal to ’char(i)’.’

The resulting message will be “Variable I is equal to 57.”

Note

Integer values must be converted using the CHAR function before they can be
used as part of a string expression.

CMONTH

CMONTH()

Results

String

Function

The CMONTH function returns the name of the current month in mixed case
letters (January, February, ..., December).

Examples
say ’The current month is ’cmonth()’.’

COFF

COFF()

Results

Integer

Chapter 26. Reference to STL functions 459

Function

The COFF function returns the offset of the current cursor position for display
terminals. The offset is relative to the beginning of the screen (or of the currently
active partition for terminals that support partitioning). The first position of a
screen (partition) is offset 1, except when the COFF function is explicitly invoked
from the CURSOR function, in which case it is offset 0.

Examples
a = coff() /* Set variable "a" to the cursor’s offset. */
cursor(coff()+5) /* Move the cursor five positions to the right. */

Note

This function returns unpredictable results for nondisplay terminals.

COPIES

COPIES(string,n)

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767.

Results

String

Function

The COPIES function returns n concatenated copies of string.

Examples
a = COPIES(’abc’,3) /* Assigns ’abcabcabc’ to "a" */
b = COPIES(’ ab’,3) /* Assigns ’ ab ab ab’ to "b" */

Note: The COPIES function cannot be used in asynchronous conditions.

CPOS

CPOS(row_number,column_number)

Where

row_number is an integer expression that will be compared to the current row of
the cursor. If an integer constant is used, it must be from 1 to 255.

column_number is an integer expression that will be compared to the current
column of the cursor. If an integer constant is used, it must be from 1 to 255.

460 WSim Script Guide and Reference

Results

Bit

Function

The CPOS function returns a bit value: ON if the current cursor position matches
the row and column values specified as function arguments; OFF otherwise.

Examples
if cpos(13,25) then ... /* Condition will be met if */

/* cursor is on row 13, column */
/* 25. */

if cpos(13,colx) then ... /* Condition will be met if the */
/* cursor row is 13, and the */
/* cursor column is the same as */
/* the value of variable "colx." */

if cpos(1,1) & substr(screen,coff(),5) = ’Hello’ then ...
/* Condition will be met if */
/* cursor is on row 1, column 1, */
/* and the screen contains */
/* ’Hello’ at the cursor */
/* location. */

on_target = cpos(12,40) /* Bit variable "on_target" will */
/* be set ON if the cursor is at */
/* row 12, column 40; otherwise, */
/* it will be set OFF. */

CROW

CROW()

Results

Integer

Function

The CROW function returns the row number of the current cursor position for
display terminals. The first row on the screen is row number 1.

Examples
a = crow() + 5 /* Set "a" to the cursor row plus 5. */

Note

This function returns unpredictable results for nondisplay terminals.

Chapter 26. Reference to STL functions 461

C2D

C2D(string[,length])

Where

string is any valid string expression.

length is an integer constant expression with a value of 1 to 4.

Results

Integer

Function

The C2D function returns the integer value of the binary representation of string.
length specifies the number of characters of string to be converted. If length is not
specified, all characters will be converted.

Examples
i = ’50’x /* "i" is a string variable. */
a = c2d(i) /* "a" is an integer variable with a value of */

/* 80 (’50’x). */
a = c2d(’A’) /* "a" is an integer variable with a value of */

/* 193 (’C1’x). */

Note

If the specified string is the null string, the result of this function is undefined.

C2X

C2X(string)

Where

string is any valid string expression.

Results

String

Function

The C2X function returns a character string containing the hexadecimal
representation (unpacked) of string.

462 WSim Script Guide and Reference

Examples
c = ’Mark’ /* "c" is a string variable. */
say c2x(c) /* You will see "D4819992". */
say c2x(’7D’x) /* You will see "7D". */

DATE

DATE([date_format][,days_offset][,offset_direction])

Where

date_format is a single character string constant from the following list: D, E, H, J,
M, N, O, P, S, T, U, W. The default value is T. You can use uppercase or lowercase
letters. If specified directly, the character must be enclosed in single or double
quotation marks. It can also be a named single-byte string constant.

days_offset is an integer expression. The default is 0.

offset_direction is an indicator of whether the days_offset is into the future ('+'), or
into the past ('-'), relative to the current date. The format is a single byte string
constant with the value '+' or '-'. The default is '+'.

Results

String

Function

The DATE function returns the current date in the following format depending on
the date_format requested:

D (Days); returns number of days so far this year in the format: ddd (with
leading zeros).

E (European); returns date in the format: dd/mm/yy.

H (Julian-packed with hex F padded); returns date in the packed format:
yydddF.

J (Julian); returns date in the format: yyddd.

M (Month); returns full name of the current month in mixedcase. For
example, May.

N (Normal); returns date in the format: dd mon yyyy. For example, 06 Feb
2002.

O (Ordered); returns date in the format: yy/mm/dd.

P (Packed WSim standard); returns date in the packed format: mmddyy.

S (Sorted); returns date in the format: yyyymmdd.

T (WSim standard-default); returns date in the format: mmddyy.

U (USA); returns date in the format: mm/dd/yy

W (Weekday); returns the day of the week in mixed case. For example, Friday.

Chapter 26. Reference to STL functions 463

If days_offset is not specified or is 0, the current date will be returned. If a value
other than 0 is specified, the date days_offset days into the future or into the past
(depending on offset_direction) will be returned.

Examples
say date(’U’) /* Display date in USA format, for example 02/18/02 */
say date() /* Display date in standard WSim format, */

/* for example, 021802 */
say date(,10) /* Display date 10 days from today in standard WSim */

/* format, that is, if today is 02/18/02 then */
/* 022802 would be returned. */

say date(’N’,10,’-’)
/* Display date 10 days ago, in Normal format. */
/* That is, if today is 02/18/02 then 08 Feb 2002 */
/* is returned. */

DAY

DAY()

Results

String

Function

The DAY function returns the number of the current day of the month (a
2-character string).

Examples
today = day()
if today = ’01’ then /* First day of the month. */
do /* Change all passwords. */
&#8942;

DBCSADD

DBCSADD(string)

Results

String

Function

The DBCSADD function adds SO/SI characters to a string expression. For more
information on DBCS, see “Simulating DBCS terminals” on page 271.

Examples
/* Before: ’.A.B.C’ */

a = dbcsadd(’42C142C242C3’x) /* a = ’0E42C142C242C30F’x */
/* After: ’<.A.B.C>’ */

464 WSim Script Guide and Reference

DBCSADJ

DBCSADJ(string)

Results

String

Function

The DBCSADJ function deletes SI/SO character pairs from a string expression. For
more information on DBCS, see “Simulating DBCS terminals” on page 271.

Examples
/* Before: ’<.A><.B.C>’ */

a = dbcsadj(’0E42C10F0E42C242C30F’x) /* a = ’0E42C142C242C30F’x */
/* After: ’<.A.B.C>’ */

DBCSDEL

DBCSDEL(string)

Results

String

Function

The DBCSDEL function deletes SO/SI characters from a string expression. For
more information on DBCS, see “Simulating DBCS terminals” on page 271.

Examples
/* Before: ’0E42C142C242C30F’x */

a = dbcsdel(’<.A.B.C>’) /* a = ’.A.B.C’ */
/* After: ’42C142C242C3’x */

DBCS2SB

DBCS2SB(string)

Results

String

Chapter 26. Reference to STL functions 465

Function

The DBCS2SB function converts ward 42 (EBCDIC) DBCS string expression data to
SBCS data. For more information on DBCS, see “Simulating DBCS terminals” on
page 271.

Examples
a = dbcs2sb(’<.A.B.C>’) /* a = ’C1C2C3’x or ’ABC’ */

a = dbcs2sb(’0E42C142C242C30F’x) /* a = ’C1C2C3’x or ’ABC’ */

a = dbcs2sb(’42C142C242C3’x) /* a = ’C1C2C3’x or ’ABC’ */

DELSTR

DELSTR(string,n[,length])

Where

string is a string expression.

n is the position of the first character in string to be deleted. n is an integer
expression with a value from 1 to 32767.

length is the number of characters to be deleted. length is an integer expression
with a value from 0 to 32767. This is optional.

Results

String

Function

The DELSTR function deletes the substring beginning at character n for length
length. If length is not specified, the rest of the string is deleted (including character
n). If n is greater than the length of string, the string is returned unchanged.

Examples
a = delstr(’ABCD’,3) /* Assigns ’AB’ to "a" */
b = delstr(’ABCDE’,3,2) /* Assigns ’ABE’ to "b" */
c = delstr(’ABCDE’,6) /* Assigns ’ABCDE’ to "c" */
d = delstr(’F5C3D9FF’x,2,2) /* Assigns ’F5FF’ to "d" */

Note

The DELSTR function cannot be used in asynchronous conditions.

DELWORD

DELWORD(string,n[,length])

466 WSim Script Guide and Reference

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767.

length is an integer expression with a value from 1 to 32767. This is optional.

Results

String

Function

The DELWORD function returns string after deleting the substring that starts at the
nth word and is of length blank-delimited words. If you omit length, or if length is
greater than the number of words from n to the end of string, the function deletes
the remaining words in string (including the nth word). If n is greater than the
number of words in string, the function returns string unchanged. The string
deleted includes any blanks following the final word involved but none of the
blanks preceding the first word involved.

Examples
a = DELWORD(’Now is the time’,2,2) /* Assigns ’Now time’ to "a" */
b = DELWORD(’Now is the time’,3) /* Assigns ’Now is’ to "b" */
c = DELWORD(’Now is the time’,1,2) /* Assigns ’the time’ to "c" */

Note: The DELWORD function cannot be used in asynchronous conditions.

DEVID

DEVID()

Results

String

Function

The DEVID function returns the name of the simulated device executing the STL
program. This is the 1- to 8-character name coded on the DEV or LU definition
statement.

Examples
say devid() ’has logged on’

D2C

D2C(number[,n])

Chapter 26. Reference to STL functions 467

Where

number is an integer expression.

n is an integer constant expression with a value of 1 to 4. This is optional.

Results

String

Function

The D2C function converts a decimal integer value into its equivalent hexadecimal
string value. n specifies the number of characters to be returned. If n is specified as
1 and the hexadecimal string has a length greater than 1, then the rightmost byte is
returned. If n is not specified, all significant bytes of the number will be returned;
a leading zero will not be returned.

Examples
a = D2C(15) /* Assigns ’0F’x to "a" */
b = D2C(32767) /* Assigns ’7FFF’x to "b" */
c = D2C(32767,1) /* Assigns ’FF’x to "c" */

Notes:

v The D2C function cannot be used in asynchronous conditions.
v The D2C function is equivalent to the HEX function and was added solely to

accommodate those familiar with the REXX programming language.

E2D

E2D(numeric_string_expression[,length])

Where

numeric_string_expression is a string expression whose value is the EBCDIC
representation of a decimal number.

length is an integer constant expression with a value from 1 to 10; the default is 10.

Results

Integer

Function

The E2D function converts the first length characters of numeric_string_expression
from an EBCDIC representation of a number to a decimal number. Leading
non-numeric characters are ignored. Conversion continues until the first length
characters of number_string_expression are processed or until a non-numeric
character is found after a numeric character.

468 WSim Script Guide and Reference

If the value of numeric_string_expression is greater than 2147483647 or if the first
length number of characters does not contain any numeric characters, E2D will
return unpredictable results.

Examples
a = ’This is message number 100.’
count = e2d(substr(a,24,3),3) /* "count" is an integer */

/* variable. After this */
/* statement, "count" will have */
/* a value of 100. */

dollars = e2d(’$5’,2) /* "dollars" now has a value */
/* of five. The leading dollar */
/* sign ($) is ignored. */

dollars = e2d(’$5.25’,5) /* "dollars" will be assigned a */
/* value of five. The decimal */
/* point (.) terminates */
/* conversion, even though a */
/* length of five is specified. */

FM

FM()

Results

String

Function

The FM function simulates the action of the Field Mark key on a display device.
This function is valid only on TYPE statements and should be used only when
simulating 3270 terminals; WSim will ignore FM if you try to simulate terminals
not listed here.

Examples
cursor(10,20) /* Position cursor on row 10, column 20. */
type fm() /* Mark this field. */

Note

The function of the Field Mark key can also be simulated using the FM statement.

HEX

HEX(number[,length])

Chapter 26. Reference to STL functions 469

Where

number is an integer expression.

length is an integer constant expression with a value of 1 to 4.

Results

String

Function

The HEX function converts a decimal integer value into its equivalent hexadecimal
string value. length specifies the number of characters to be returned. If length is
not specified, all significant bytes of the number will be returned; a leading zero
will not be returned.

If a length of 1 is specified and the hexadecimal string has a length greater than 1,
then the right-most byte is returned.

Examples
a = 15 /* "a" is an integer variable with a value of 15. */
hex_a = hex(a) /* "hex_a" is a string variable with a value of */

/* ’0F’x. */
hex_b = hex(4,2) /* "hex_b" is a string variable with a value of */

/* ’0004’x. */

ID

ID([length])

Where

length is an integer constant expression with a value from 1 to 8.

Results

String

Function

The ID function returns all or part of the name of a terminal. If length is not
specified, an 8-character string will be returned. If length is longer than the
terminal's name, the returned string will be padded with blanks on the right. If
length is shorter than the terminal's name, the name will be truncated on the right.

Examples
/* This terminal’s name is LUXYZ. */

say id() /* Result: ’LUXYZ ’. */
say id(5) /* Result: ’LUXYZ’. */
say id(6) /* Result: ’LUXYZ ’ (notice blank padding). */
say id(3) /* Result: ’LUX’ (notice truncated name). */

470 WSim Script Guide and Reference

INDEX

INDEX(source,target)

Where

source is a string expression.

target is a string expression.

Results

Integer

Function

The INDEX function identifies the position within a source string of a target string.
If the source string does not contain the target string, a value of 0 is returned.

Examples
a = index(’Hello’,’H’) /* "a" will be set to 1. */
a = index(’Hello’,’t’) /* "a" will be set to 0. */

if index(screen,’Welcome’) > 0 then ...
/* True if WELCOME is on */
/* the screen. */

onin index(data,’***’) > 0 then ... /* True if *** is in the */
/* data stream. */

message = substr(screen,index(screen,’ERROR’),80)
/* Set variable "message" */
/* to the 80 characters of */
/* screen data beginning */
/* with ERROR. */

Note

Be careful when using INDEX to find a string on a screen with spaces in it; they
may actually be nulls on the screen.

INSERT

INSERT(new,target[,[n][,[length][,pad]]])

Where

new is the string expression to be inserted.

target is the string expression where new is to be inserted.

Chapter 26. Reference to STL functions 471

n is the position in target after which new is to be inserted. n is an integer
expression with a value from 0 to 32766. This is optional.

length is the number of characters to which new will be padded as it is inserted.
length is an integer expression with a value from 0 to 32767. This is optional.

pad is the 1-character string constant or 2-digit hexadecimal constant used for
padding.

Results

String

Function

The INSERT function inserts the string new, padded to length length, into the string
target after character n. If n is greater than the length of the target string, padding
is added between the two strings. The default value for n is 0, which means insert
before the beginning of the string. The default value for length is the length of new.
The default pad character is blank (X'40').

Examples
a = insert(’ ’,’ABCDEF’,3) /* Assigns ’ABC DEF’ to "a" */
b = insert(’123’,’ABC’,5,6) /* Assigns ’ABC 123 ’ to "b" */
c = insert(’123’,’ABC’,5,6,’+’) /* Assigns ’ABC++123+++’ to "c" */
d = insert(’123’,’ABC’) /* Assigns ’123ABC’ to "d" */
e = insert(’123’,’ABC’,,5,’-’) /* Assigns ’123--ABC’ to "e" */
f = insert(’1234’x,’ABCD’x,1,3) /* Assigns ’AB123440CD’x to "f" */
g = insert(’12’x,’AB’x,1,3,’FF’x) /* Assigns ’AB12FFFF’x to "g" */

Note

The INSERT function cannot be used in asynchronous conditions.

LASTPOS

LASTPOS(needle,haystack[,start])

Where

needle is a string expression.

haystack is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Results

Integer

Function

The LASTPOS function returns the position of the last occurrence of one string,
needle, in another, haystack. (See also the POS function.) If needle is the null string or

472 WSim Script Guide and Reference

is not found then the function returns a 0. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying start,
the point at which the backward scan starts. The default for start is set equal to
LENGTH(haystack) if the value specified is larger than LENGTH(haystack) or if it is
omitted.

Examples
a = LASTPOS(’ ’,’ab cd ef gh’) /* Assigns 9 to "a" */
b = LASTPOS(’ ’,’ab cd ef gh’,7) /* Assigns 6 to "b" */
c = LASTPOS(’25’,’12352425352522’,10) /* Assigns 7 to "c" */

Note: The LASTPOS function cannot be used in asynchronous conditions.

LASTVERB

LASTVERB()

Results

String

Function

The LASTVERB function returns the name of the last CPI-C statement (verb) that
was issued for this CPI-C STL program.

Examples
say ’The name of the last CPI-C statement is: ’lastverb()’.’

Note: This function is intended for use with CPI-C simulations; results will be the
null string if used in other simulations.

LEFT

LEFT(string,length[,pad])

Where

string is a string expression.

length is the final length of the string. length is an integer expression with a value
from 0 to 32767.

pad is the 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Chapter 26. Reference to STL functions 473

Function

The LEFT function returns a string of length length containing the leftmost length
characters of string. The string is padded with pad characters (or truncated) on the
right as needed. The default pad character is a blank (X'40').

Examples
a = left(’ABC D’,8) /* Assigns ’ABC D ’ to "a" */
b = left(’ABC D’,8,’.’) /* Assigns ’ABC D...’ to "b" */
c = left(’ABCDEF’,3) /* Assigns ’ABC’ to "c" */
d = left(’F5C4D9’x,5) /* Assigns ’F5C4D94040’x to "d" */
e = left(’F5C4D9’x,5,’AA’x) /* Assigns ’F5C4D9AAAA’x to "e" */

Note

The LEFT function cannot be used in asynchronous conditions.

LENGTH

LENGTH({integer_expression})
{string}

Where

integer_expression is an integer expression.

string is a string expression.

Results

Integer

Function

The LENGTH function returns the length of the specified string expression or
integer expression.

Examples
a = length(’Now is the time’) /* "a" is assigned a value of 15. */

b = ’Now is the time’
a = length(b) /* "a" is assigned a value of 15. */

a = length(255) /* "a" is assigned a value of 3. */

Note

Special instances of the LENGTH function are permitted on SUBSTR and
ATTR3270 function references. See “ATTR3270” on page 449 and “SUBSTR” on
page 488 for more information.

474 WSim Script Guide and Reference

LUID

LUID()

Results

String

Function

The LUID function returns the name of the simulated LU executing the STL
program. This is the 1- to 8-character name coded on the LU network definition
statement.

Examples
say ’My LU name is’ luid()

MONTH

MONTH()

Results

String

Function

The MONTH function returns a 2-character string that is the number of the current
month.

Examples
this_month = month()
today = day()
if this_month = ’04’ & , /* It must be April. */

today = ’15’ then /* It is the 15th day of the month. */
do /* Calculate income taxes. */

&#8942;

MSGTXTID

MSGTXTID()

Results

String

Chapter 26. Reference to STL functions 475

Function

The MSGTXTID function returns the name of the current STL procedure. This is
the 1- to 8-character name coded on the MSGTXT statement.

Examples
say ’Executing procedure: ’msgtxtid()

NETID

NETID()

Results

String

Function

The NETID function returns the name of the simulated terminal's network. This is
the 1- to 8-character name coded on the NTWRK network definition statement.

Examples
say ’My network is ’netid()

NL

NL()

Results

String

Function

The NL function simulates the function of the New Line key on a 3270 (LU Type 2)
terminal. The cursor is set to the first unprotected character location of the next
line on the screen. If no unprotected fields exist, the cursor is set to character
location 0 (top left corner of screen or partition). If the screen contains no fields,
the cursor is set to the first position on the next line.

Examples
type ’This is the first line’nl()’And this is the second line’

Note

This function is only valid on a TYPE statement.

476 WSim Script Guide and Reference

NUMCOLS

NUMCOLS()

Results

Integer

Function

The NUMCOLS function returns the number of columns on a simulated terminal's
screen.

Examples
a = numcols() /* Set variable "a" to number of columns on screen. */

Note

Use this function for display terminals only. It returns unpredictable results for
nondisplay terminals.

NUMROWS

NUMROWS()

Results

Integer

Function

The NUMROWS function returns the number of rows on a simulated terminal's
screen.

Examples
a = numrows() /* Set variable "a" to number of rows on screen. */

Note

Use this function for display terminals only. It returns unpredictable results for
nondisplay terminals.

OVERLAY

OVERLAY(new,target[,[n][,[length][,pad]]])

Chapter 26. Reference to STL functions 477

Where

new is a string expression.

target is a string expression.

n is an integer expression. This is optional.

length is an integer expression. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The OVERLAY function returns the string target, which, starting at the nth
character, is overlaid with the string new, padded or truncated to the value of
length. Overlays may also extend beyond the end of the optional target string. If n
is greater than the length of the target string, padding is added before the new
string. The default for n is 1. If length is not specified, it defaults to a value equal
to the length of the string expression new. The default value for pad is a blank
(X'40').

Examples
a = OVERLAY(’ ’,’abcdef’,3) /* Assigns ’ab def’ to "a" */
b = OVERLAY(’.’,’abcdef’,3,2) /* Assigns ’ab. ef’ to "b" */
c = OVERLAY(’qq’,’abcd’) /* Assigns ’qqcd’ to "c" */
d = OVERLAY(’qq’,’abcd’,4) /* Assigns ’abcqq’ to "d" */
e = OVERLAY(’123’,’abc’,5,6,’+’) /* Assigns ’abc+123+++’ to "e" */

Note: The OVERLAY function cannot be used in asynchronous conditions.

PATHID

PATHID()

Results

String

Function

The PATHID function returns the name of the PATH statement currently being
executed. This is the 1- to 8-character name coded on the PATH statement.

Examples
say ’The current path is’ pathid()

Note: The PATHID function can be used in asynchronous conditions.

478 WSim Script Guide and Reference

POS

POS(needle,haystack[,start])

Where

needle is a string expression.

haystack is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Results

Integer

Function

The POS function returns the position of one string, needle, in another, haystack.
(See also the LASTPOS function.) If needle is the null string or is not found or if
start is greater than the length of haystack then the function returns a 0. By default
the search starts at the first character of haystack.

Examples
a = POS(’ ’,’ab cd ef gh’) /* Assigns 3 to "a" */
b = POS(’ ’,’ab cd ef gh’,7) /* Assigns 9 to "b" */
c = POS(’25’,’12352425352522’,10) /* Assigns 11 to "c" */

Note: The POS function cannot be used in asynchronous conditions.

POSTED

POSTED(event_name)

Where

event_name is a string expression that specifies the name of an event. If it is a string
constant expression, event_name must be 1 to 8 alphanumeric characters and
enclosed in single or double quotation marks. (Strings containing hexadecimal
constants are exempt from this restriction.) If you specify a nonconstant string
expression, the first 8 characters of the string are used. If the string is shorter than
8 characters, the available characters are used. To satisfy conditions using event
names, the first 8 characters must match exactly. If you specify a string variable, it
cannot be the name of one of the reserved variables (for example, BUFFER).

Results

Bit

Chapter 26. Reference to STL functions 479

Function

The POSTED function returns a value of true (ON) if the specified event has been
posted. Otherwise, it returns a value of false (OFF).

Examples
if posted(’MYEVENT’) then /* Test posting of MYEVENT. */

post_flag = posted(’MYEVENT’) /* Set "post_flag" ON if */
/* MYEVENT is posted. */

PULL

PULL([queue_name])

Where

queue_name is a string expression consisting of 1 to 8 alphanumeric characters. This
is optional.

Results

String

Function

The PULL function returns the next text/string item from queue_name.

If the specified queue_name is a nonconstant expression, the first 8 characters of the
string are used. If the string is shorter than 8 characters, the available characters
are used. When specifying queue_name within the PULL function, the specified
name must exactly match the name initially used to QUEUE or PUSH the
text/string item.

If you specify a string variable, it cannot be the name of one of the STL reserved
variables (for example, BUFFER). If not specified, queue_name defaults to a unique
value assigned to each device.

Examples
user_queue = ’UseridQ’ /* Assigns ’UseridQ’ to "user_queue" */
queue ’111111’ TO user_queue /* Places ’111111’ on queue ’UseridQ’ */
queue ’222222’ TO ’UseridQ’ /* Places ’222222’ on queue ’UseridQ’ */
queue ’ABCD’ /* Places ’ABCD’ on unique device Q */
a = PULL(’UseridQ’) /* Assigns ’111111’ to "a" */
b = PULL(user_queue) /* Assigns ’222222’ to "b" */
c = PULL() /* Assigns ’ABCD’ to "c" */

Notes:

v The PULL function can be used in asynchronous conditions.
v The named queue structure and text/string data items are allocated dynamically

by WSim and deleted as the queue is emptied.

480 WSim Script Guide and Reference

QUEUED

QUEUED([queue_name])

Where

queue_name is a string expression consisting of 1 to 8 alphanumeric characters. This
is optional.

Results

Integer

Function

The QUEUED function returns the number of text/string items on queue_name.

If the specified queue_name is a nonconstant expression, the first 8 characters of the
string are used. If the string is shorter than 8 characters, the available characters
are used. When specifying queue_name within the QUEUED function, the specified
name must exactly match the name initially used to QUEUE or PUSH the
text/string item. If you specify a string variable, it cannot be the name of one of
the STL reserved variables (for example, BUFFER). If not specified, queue_name
defaults to a unique value assigned to each device.

Examples
Q_name = ’I’||devid() /* This example will place */
Do i = 1 to 5 /* five entries on a queue. */

Queue char(i) to Q_name /* Then the queue will be */
End /* read until it is empty. */
Do while queued(Q_name) > 0

Say ’Queue item’ pull(Q_name)
End

Notes:

v The QUEUED function cannot be used in asynchronous conditions.
v The named queue structure and text/string data items are allocated dynamically

by WSim and deleted as the queue is emptied.

RANDOM

RANDOM({’RN’,rn_number})
{low,high}

Where

rn_number is an integer constant expression with a value from 0 to 255.

low is an integer expression with a value from 0 to 2147483646.

Chapter 26. Reference to STL functions 481

high is an integer expression with a value from 1 to 2147483647. The value for high
must be greater than the value for low.

Results

Integer

Function

The RANDOM function returns a random number.

If (low,high) is specified, the number returned will be in the range of numbers
between low and high.

If ("RN",rn_number) is specified, the number returned will be taken from the range
of numbers specified on the RN network definition statement with label rn_number.

Examples
a = random(1,200) /* "a" is assigned a random number between 1 */

/* and 200. */

a = random("RN",3) /* "a" is assigned a random number in the */
/* range specified by RN statement 3. */

REPEAT

REPEAT(character,count)

Where

character is a single character string constant.

count is an integer expression with a value from 1 to 32767.

Results

String

Function

The REPEAT function returns a string consisting of count occurrences of character.

Examples
say repeat(’A’,5) /* Result will be "AAAAA". */

say repeat(’FF’x,5) /* Result will be "FFFFFFFFFF"x. */

a = 50
say repeat(’X’,a) /* X is repeated 50 times. */

482 WSim Script Guide and Reference

REVERSE

REVERSE(string)

Where

string is a string expression.

Results

String

Function

The REVERSE function returns a string with the order of the characters reversed.

Examples
a = REVERSE(’abcdefghi’) /* Assigns ’ihgfedcba’ to "a" */
b = REVERSE(’517C’x) /* Assigns ’7C51’x to "b" */

Note: The REVERSE function cannot be used in asynchronous conditions.

RIGHT

RIGHT(string,length[,pad])

Where

string is a string expression.

length is the final length of the string. length is an integer expression with a value
from 0 to 32767.

pad is the 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The RIGHT function returns a string of length length containing the rightmost
length characters of string. The string is padded with pad characters (or truncated)
on the left as needed. The default pad character is a blank (X'40').

Chapter 26. Reference to STL functions 483

Examples
a = right(’ABC D’,8) /* Assigns ’ ABC D’ to "a" */
b = right(’ABC DEF’,5) /* Assigns ’C DEF’ to "b" */
c = right(’12’,5,’0’) /* Assigns ’00012’ to "c" */
d = right(’F5C4D9’x,5) /* Assigns ’4040F5C4D9’x to "d" */
e = right(’F5C4D9’x,5,’AA’x) /* Assigns ’AAAAF5C4D9’x to "e" */

Note

The RIGHT function cannot be used in asynchronous conditions.

RNUM

RNUM({’RN’,rn_number[,length]})
{low,high[,length]}

Where

rn_number is an integer constant expression with a value from 0 to 255.

length is an integer constant expression with a value from 1 to 10.

low is an integer expression with a value from 0 to 2147483646.

high is an integer expression with a value from 1 to 2147483647. The value for high
must be greater than the value for low.

Results

String

Function

The RNUM function returns the string (EBCDIC) representation of a random
number. If (low,high) is specified, the number returned will be in the range of
numbers between low and high.

If ('RN',rn_number) is specified, the number returned will be taken from the range
of numbers specified on the RN network definition statement with label rn_number.

The length of the returned string is specified by length. If length is not coded, a
default length of ten will be used. The random number generated by this function
will be padded with leading zeros if it is shorter than length.

Examples
a = rnum(1,200,3) /* Generate a 3-digit random number (string) */

/* between 1 and 200 and assign it to string */
/* variable "a". */

a = rnum(’RN’,5,4) /* Generate a 4-digit random number (string) */
/* in the range specified on RN statement 5 */
/* and assign it to string variable "a". */

484 WSim Script Guide and Reference

ROWCOL

ROWCOL(row,column)

Where

row is an integer expression. If an integer constant expression, row must be from 1
to 255.

column is an integer expression. If an integer constant expression, column must be
from 1 to 255.

Results

Integer

Function

The ROWCOL function is valid only when coded as the offset on a SUBSTR or
ATTR3270 function. It returns the screen index of the position referenced by row
and column.

When coding ROWCOL as the offset on a SUBSTR function, the source of the
substring must be either BUFFER or SCREEN.

Examples
a = substr(screen,rowcol(1,1),5) /* Assigns to string variable */

/* "a" the 5-character string */
/* found at row 1, column 1 */
/* on the screen. */

x = 20
y = 40
a = substr(screen,rowcol(x,y+5),10)

/* Assigns to string variable */
/* "a" the 10-character string */
/* found at row 20, column 45 */
/* on the screen. */

if substr(screen,rowcol(x,y+5),5) = ’Hello’ then
/* Tests the screen location */
/* row 20, column 45 for a */
/* value of Hello. */

SB2DBCS

SB2DBCS(string)

Results

String

Chapter 26. Reference to STL functions 485

Function

The SB2DBCS function converts SBCS string expression data to ward 42 (EBCDIC)
DBCS data. For more information on DBCS, see “Simulating DBCS terminals” on
page 271.

Examples
a = sb2dbcs(’ABC’) /* a = ’.A.B.C’ */

/* a = ’42C142C242C3’x */

SB2MDBCS

SB2MDBCS(string)

Results

String

Function

The SB2MDBCS function converts SBCS string expression data to ward 42
(EBCDIC) DBCS data and wraps SO/SI characters around the DBCS data to make
it a mixed string. For more information on DBCS, see “Simulating DBCS terminals”
on page 271.

Examples
a = sb2mdbcs(’ABC’) /* a = ’<.A.B.C>’ */

/* a = ’0E42C142C242C30F’x */

type sb2mdbcs(’HELLO THERE IN WARD 42 DBCS DATA’)

SESSNO

SESSNO()

Results

String

Function

The SESSNO function returns the session number of the simulated LU executing
the STL program. The format of this session number is -nnnnn, where nnnnn is the
number of the session, zero-padded on the left.

Examples
say ’My session number is ’sessno()

486 WSim Script Guide and Reference

Note

This function returns the null string for simulated terminals without session
numbers.

SPACE

SPACE(string,n[,pad])

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767. This is optional.

pad is a 1-character string constant or 2-digit hexadecimal constant used for
padding. This is optional.

Results

String

Function

The SPACE function returns the blank-delimited words in string with n pad
characters between each word. If n is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default value
for pad is a blank (X'40').

Examples
a = SPACE(’aa bb cc’,1,’+’) /* Assigns ’aa+bb+cc’ to "a" */
b = SPACE(’ ab cd ’,2) /* Assigns ’ab cd’ to "b" */
c = SPACE(’ a a ’,9,’#’) /* Assigns ’a#########a’ to "c" */

Note: The SPACE function cannot be used in asynchronous conditions.

STRIP

STRIP(string[,[option][,char]])

Where

string is a string expression.

option is a single character constant with one of the following values:

B or b removes both leading and trailing characters from string

L or l removes leading characters from string

T or t removes trailing characters from string

Chapter 26. Reference to STL functions 487

char is a single character constant. This is optional.

Results

String

Function

The STRIP function returns string with leading or trailing characters or both
removed, based on the option you specify. The third argument, char, specifies the
character to be removed. The default for option is B and the default for char is a
blank (X'40').

Examples
a = STRIP(’ abc da ’) /* Assigns ’abc da’ to "a" */
b = STRIP(’aaaabcdefaaa’,’T’,’a’) /* Assigns ’aaaabcdef ’ to "b" */
c = STRIP(’aaaabcdefaaa’,’b’,’a’) /* Assigns ’bcdef’ to "c" */

Note: The STRIP function cannot be used in asynchronous conditions.

SUBSTR

SUBSTR(source,starting_position[,length])

Where

source is a string expression.

starting_position is an integer expression with a value from 1 to 32767.

length is an integer expression with a value from 1 to 32767.

Results

String

Function

The SUBSTR function returns the substring of source that begins at the
starting_position and is of length length. If you are simulating a 3270 terminal, you
can use the options available on the ATTR3270 function that identify screen
location as your starting_position. If length is omitted, the default is the rest of the
string.

If the length is greater than the length of the source, then the string is not padded
with blanks to length.

Examples
a = substr(’ABCDEFG’,2,3) /* Assigns ’BCD’ to variable "a". */

b = ’ABCDEFG’
a = substr(b,3) /* Assigns ’CDEFG’ to variable "a". */

c = 4

488 WSim Script Guide and Reference

a = substr(b,c) /* Assigns ’DEFG’ to variable "a". */

d = 2
if substr(b,c,d) = ’DE’ then ... /* Condition will be satisfied. */

a = substr(b,4,8) /* Assigns ’DEFG’ to variable "a". */

Restrictions on use of the SUBSTR function in asynchronous
conditions

The SUBSTR function returns a string expression that can generally be used
wherever string expressions are valid. There are, however, some restrictions on the
use of the SUBSTR function within asynchronous conditions.
1. The source expression must be a string variable or STL reserved variable; it

cannot be any other type of string expression such as a string constant, string
concatenation, or function that returns a string.

2. Only integer constants and integer constant expressions can be used as
starting_position arguments.

3. Only integer constants, integer constant expressions, or single integer variables
can be used as length arguments. You cannot use expressions that include
variables.

The following are some examples of invalid and valid SUBSTR functions used on
asynchronous conditions.
/* Invalid (Variable position specified). */

name_position = 43
onin substr(screen,name_position,6) = ’MYNAME’ then ...

/* Valid (Constant position specified). */

onin substr(screen,43,6) = ’MYNAME’ then ...

/* Invalid (Variable expression specified for length). */

full_name = ’John Doe’
blank_spot = index(full_name,’ ’)
onin substr(screen,150,blank_spot-1) = substr(full_name,1,blank_spot-1) then ...

/* Valid (Simple variable specified for length). */

full_name = ’John Doe’
first_name_len = index(full_name,’ ’) - 1
onin substr(screen,150,first_name_len) = substr(full_name,1,first_name_len) then ...

SUBWORD

SUBWORD(string,n[,length])

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767.

length is an integer expression with a value from 1 to 32767. This is optional.

Chapter 26. Reference to STL functions 489

Results

String

Function

The SUBWORD function returns the substring of string that starts at the nth word
and is up to length blank-delimited words. If you omit length, it defaults to the
number of remaining words in string. The returned string never has leading or
trailing blanks, but includes all blanks between the selected words.

Examples
a = SUBWORD(’Now is the time’,2,2) /* Assigns ’is the’ to "a" */
b = SUBWORD(’Now is the time’,3) /* Assigns ’the time’ to "b" */
c = SUBWORD(’Now is the time’,5) /* Assigns ’’ to "c" */

Note: The SUBWORD function cannot be used in asynchronous conditions.

TAB

TAB()

Results

String

Function

The TAB function simulates the function of the TAB key on a 3270 (LU Type 2)
terminal. The cursor is set to the first character location of the next unprotected
field on the screen.

Examples
type ’This is the first field’tab()’and this is the second field’

Notes
v The TAB function is only valid on a TYPE statement. It will be ignored for

terminal types other than 3270 (LU2) terminals.
v The function of the TAB key can also be simulated using the TAB statement.

TCPIPID

TCPIPID()

Results

String

490 WSim Script Guide and Reference

Function

The TCPIPID function returns the name of the TCP/IP connection associated with
a simulated device. This is the 1- to 8-character name coded on the TCPIP network
definition statement.

Examples
say ’My TCP/IP connection is ’tcpipid()

Note

If the simulated device is not associated with a TCPIP network definition
statement, this function returns a null value.

TOD

TOD([length])

Where

length is an integer constant expression with a value from 1 to 8.

Results

String

Function

The TOD function returns a string representing the current time of day in the form
HHMMSSTH (hours, minutes, seconds, tenths, and hundredths of seconds). If
length is not specified, an 8-character string will be returned. If length is specified
and it is less than 8, the left-most portion of the string will be returned.

Examples
a = tod(4) /* Get only hours and minutes. */
say ’The current time is ’substr(a,3,2)’ minutes past ’substr(a,1,2)

TPID

TPID()

Results

String

Function

The TPID function returns the name of the simulated transaction program
executing the STL program.

Chapter 26. Reference to STL functions 491

Examples
say ’The transaction program name is: ’tpid()’.’

Note: This function is intended for use with CPI-C simulations; results will be the
null string if used in other simulations.

TPINSTNO

TPINSTNO()

Results

String

Function

The TPINSTNO function returns the 5-digit instance number of the simulated
transaction program executing the STL program. The format for this number is
-nnnnn, where nnnnn is the instance number of the transaction program,
zero-padded on the left. The very first instance is -00001.

Examples
say ’The transaction program instance number is: ’tpinstno()’.’

Note: This function is intended for use with CPI-C simulations; results will be the
null string if used in other simulations.

TRANSLATE

TRANSLATE(string[,[tableo][,[tablei][,pad]]])

Where

string is the string expression to be translated.

tableo is the output table string expression. tableo defaults to the null string and is
padded with pad as necessary.

tablei is the input translation table string expression. tablei defaults to the
hexadecimal range of characters X'00' through X'FF.

pad is the 1-character string constant or 2-digit hexadecimal constant used for
padding the output table when necessary. The default pad is a blank.

Results

String

492 WSim Script Guide and Reference

Function

The TRANSLATE function returns a string of the same length as the input string
with characters translated according to the tables specified. You can also use this
function to reorder the characters in the input string.

TRANSLATE searches tablei for each character in string. If the character is found,
then the corresponding character in tableo is used in the result string; if there are
duplicates in tablei, the first (leftmost) occurrence is used. If the character is not
found, the original character in string is used. The result string is always the same
length as string.

The tables can be of any length. If you omit tableo, tablei, and pad, WSim simply
translates string to uppercase (that is, lowercase a-z to uppercase A-Z). But if you
include pad without specifying tablei or tableo,WSim translates the entire string to
pad characters.

You can translate from one code to another (such as EBCDIC to ASCII or ASCII to
EBCDIC) by specifying a 256-byte standard translation table for tableo and omitting
tablei and pad.

Examples
Statement executed Results
TRANSLATE(’abcdef’) ’ABCDEF’
TRANSLATE(’abbc’,’&’,’b’) ’a&&c’
TRANSLATE(’abcdef’,’12’,’ec’) ’ab2d1f’
TRANSLATE(’abcdef’,’12’,’abcd’,’.’) ’12..ef’
TRANSLATE(’APQRV’,,’PR’) ’A Q V’
TRANSLATE(’4123’,’abcd’,’1234’) ’dabc’

Note: The last example shows how you can use the TRANSLATE function to
reorder the characters in a string. In the example, the last character of any
four-character string specified as the second argument would be moved to the
beginning of the string.

UTBL

UTBL(utbl_name,{index_number})
{’R’}
{’Rn’}

Where

utbl_name is the name of a user table. This name may be specified in one of the
following formats:
v msgutbl_name is the name coded on an MSGUTBL statement in this or another

STL program. This can also be the name coded on a message generation
MSGUTBL statement.

v utbl_number is the number coded as a label on a UTBL statement within a
network definition. The number must be from 0 to 255.

index_number is an integer expression.

n is a number from 0 to 255 and specifies a UDIST network definition statement.

Chapter 26. Reference to STL functions 493

Results

String

Function

The UTBL function returns an entry from the user table specified by utbl_name.

The second argument determines which entry is to be returned.

If index_number is used, the integer expression is evaluated and its value is used to
index into the user table. User table entries begin with an index of 0. If
index_number is greater than the maximum index for the user table, a null string is
returned.

If R is used, a randomly selected entry will be returned.

If Rn is used, an entry is chosen from the table randomly using the distribution
defined by the UDIST statement referenced by n.

Examples
mynames: msgutbl

"Mary" /* This is entry number 0. */
"Joe" /* This is entry number 1. */
"John" /* This is entry number 2. */
"Sue" /* This is entry number 3. */

endutbl
&#8942;
a = 1
b = 2
name = utbl(mynames,0) /* "Mary" is returned. */
name = utbl(mynames,a+b) /* "Sue" is returned. */
name = utbl(mynames,"R") /* A random entry is returned. */
name = utbl(mynames,"R3") /* A random entry with the */

/* distribution defined by */
/* UDIST number 3 is returned. */

UTBLMAX

UTBLMAX(user_table)

Where

user_table is one of the following:
v The name of an STL MSGUTBL defined in this or another STL source data set.
v A number (integer constant expression) from 0 to 255 corresponding to the

number coded on a UTBL network definition statement.
v The name coded on a MSGUTBL definition statement.

Results

Integer

494 WSim Script Guide and Reference

Function

The UTBLMAX function returns the index of the last entry in the specified user
table.

Examples
do i = 0 to utblmax(myutbl) /* Loop through MYUTBL. */
&#8942;
end

UTBLSCAN

UTBLSCAN(source,utbl_name[,integer_variable])

Where

source is the string expression for which the specified UTBL or MSGUTBL is to be
searched.

utbl_name is the name of a user table. This name can be specified in one of the
following formats:
v msgutbl_name is the name coded on an MSGUTBL statement in this or another

STL program. This can also be the name coded on a message generation
MSGUTBL statement.

v utbl_number is the number coded as a label on a UTBL statement in a network
definition. The number must be from 0 to 255.

integer_variable is the name of an integer variable.

Results

Bit (and optionally, integer)

Function

The UTBLSCAN function scans the user table specified by utbl_name for an entry
that matches source.

The UTBLSCAN function will return an ON (or “true”) setting if an entry in the
UTBL is found that matches the source string. If a match is not found, the function
will return an OFF (or “false”) setting. If you specify an integer variable as a third
argument and if a match is found, the UTBLSCAN function will also assign the
matching UTBL entry number to the specified integer variable. If a match is not
found, the specified integer variable's value will not be changed.

Examples
sample: msgutbl

’Hello’
’Goodbye’
endutbl

&#8942;
if utblscan(’Hello’,sample) = on then ... /* This condition will */

/* be met. */

Chapter 26. Reference to STL functions 495

greeting = ’Good Morning’
greeting_found = utblscan(greeting,sample) /* UTBLSCAN function */

/* can be used in bit */
/* assignment. Here, */
/* "greeting_found" is */
/* set to OFF. */

VTAMAPID

VTAMAPID()

Results

String

Function

The VTAMAPID function returns the name of the VTAMAPPL associated with a
simulated LU. This is the 1- to 8-character name coded on the VTAMAPPL
network definition statement.

Examples
say ’My VTAMAPPL is ’vtamapid()’.’

Note

If the simulated LU is not associated with a VTAMAPPL, this function will return
the null string.

WORD

WORD(string,n)

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767.

Results

String

Function

The WORD function returns the nth blank-delimited word in string or returns the
null string if fewer than n words are in string. This function is exactly equivalent to
SUBWORD(string,n,1).

496 WSim Script Guide and Reference

Examples
a = WORD(’Now is the time’,3) /* Assigns ’the’ to "a" */
b = WORD(’Now is the time’,5) /* Assigns ’’ to "b" */

Note: The WORD function cannot be used in asynchronous conditions.

WORDINDEX

WORDINDEX(string,n)

Where

string is a string expression.

n is an integer expression with a value from 1 to 32767.

Results

Integer

Function

The WORDINDEX function returns the position of the first character in the nth
blank-delimited word in string or returns 0 if fewer than n words are in string.

Examples
a = WORDINDEX(’Now is the time’,2) /* Assigns 5 to "a" */
b = WORDINDEX(’Now is the time’,3) /* Assigns 8 to "b" */
c = WORDINDEX(’Now is the time’,5) /* Assigns 0 to "c" */

Note: The WORDINDEX function cannot be used in asynchronous conditions.

WORDPOS

WORDPOS(phrase,string[,start])

Where

phrase is a string expression.

string is a string expression.

start is an integer expression with a value from 1 to 32767. This is optional.

Results

Integer

Chapter 26. Reference to STL functions 497

Function

The WORDPOS function returns the word number of the first word of phrase
found in string or returns 0 if phrase contains no words or if phrase is not found in
string. Multiple blanks between words in either phrase or string are treated as a
single blank for the comparison, but otherwise the words must match exactly. By
default the search starts at the first word in string. You can override this by
specifying start, the word at which to start the search.

Examples
a = WORDPOS(’ is what’,’It is what it is’) /* Assigns 2 to "a" */
b = WORDPOS(’it is’,’It is what it is’) /* Assigns 4 to "b" */
c = WORDPOS(’ is ’,’It is what it is’,3) /* Assigns 5 to "b" */
d = WORDPOS(’ Is ’,’It is what it is’) /* Assigns 0 to "d" */

Note: The WORDPOS function cannot be used in asynchronous conditions.

WORDS

WORDS(string)

Where

string is a string expression.

Results

Integer

Function

The WORDS function returns the number of blank-delimited words in string.

Examples
a = WORDS(’Now is the time ’) /* Assigns 4 to "a" */
b = WORDS(’a b d cd e f’) /* Assigns 6 to "b" */

Note: The WORDS function cannot be used in asynchronous conditions.

X2B

X2B(hexstring)

Where

hexstring is a string expression containing hexadecimal characters.

Results

String

498 WSim Script Guide and Reference

Function

The X2B function returns a string, in character format, that represents hexstring
converted to a binary string. The hexstring is a string of hexadecimal characters. It
can be of any length. Each hexadecimal character is converted to a string of four
binary digits. You can optionally include blanks in hexstring (at byte boundaries
only, not leading or trailing) to aid readability; they are ignored. The returned
string has a length that is a multiple of four, and does not include any blanks. If
hexstring is null, the function returns a null string.

Examples
a = X2B(’F1C2’) /* Assigns ’1111000111000010’ to "a" */
b = X2B(’5A A5’) /* Assigns ’0101101010100101’ to "b" */

Note: The X2B function cannot be used in asynchronous conditions.

X2C

X2C(hexstring)

Where

hexstring is a string expression containing hexadecimal characters.

Results

String

Function

The X2C function returns a string, in character format, that represents hexstring
converted to a character string. The returned string is half as many bytes as the
original hexstring. The string hexstring can be any length. If necessary, it is padded
with a leading 0 to make an even number of hexadecimal digits. You can
optionally include blanks in hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored. If hexstring is null, the function returns
a null string.

Examples
a = X2C(’F1F2 F3’) /* Assigns ’123’ to "a" */
b = X2C(’C1 C2 C3’) /* Assigns ’ABC’ to "b" */
c = X2C(’8140’) /* Assigns ’a ’ to "b" */

Note: The X2C function cannot be used in asynchronous conditions.

YEAR

YEAR()

Chapter 26. Reference to STL functions 499

Results

String

Function

The YEAR function returns a 2-character string that represents the last two
characters of the current year.

Examples
if year() = ’02’ then /* It must be 2002. */

say ’The current year is 2002.’

500 WSim Script Guide and Reference

Chapter 27. Keys valid for particular devices

The following list indicates the device key statements and AID keys that can be
used for particular devices.

3270 Simulation DUP LCLEAR

BTAB ENTER LIGHTPEN

CHARSET EREOF NL

CLEAR ERIN PAn

CLEARPTN FM PFnn

COLOR HIGHLITE RESET

CTAB HOME SCROLL

CURSOR INSERT TAB

CURSRSEL JUMP

DELETE

© Copyright IBM Corp. 1983, 2015 501

502 WSim Script Guide and Reference

Chapter 28. Expressions not allowed in asynchronous
conditions

STL expressions requiring WSim counters or save areas for the computation of
intermediate results are not allowed in asynchronous conditions on ONIN,
ONOUT, or ON SIGNALED statements. The following types of expressions are not
allowed:
v Any SUBSTR function with a string constant as the first argument.

/***************/
/* NOT ALLOWED */
/***************/
onin substr(’hello’,1,1) = ’h’ then ...

/***********/
/* ALLOWED */
/***********/
onin substr(c,1,1) = ’h’ then ... /* "c" is a string variable. */

v Any SUBSTR function with a nonconstant integer as the second argument.

Note: There are two exceptions to this rule. The COFF() and LENGTH(SCREEN)
functions can be used to specify an offset.
/***************/
/* NOT ALLOWED */
/***************/
onin substr(ru,a,1) = ’h’ then ... /* "a" is an integer variable. */
onin substr(ru,index(ru,’hello’),1) = ’h’ then ...
onin substr(ru,a+1,1) = ’h’ then ... /* "a" is an integer variable. */

/***********/
/* ALLOWED */
/***********/
onin substr(ru,7,5) = ’Hello’ then ...
onin substr(screen,length(screen)-15,8) = ’MORE ...’ then ...
onin substr(screen,coff()+3,7) = ’WELCOME’ then ...

v Any integer comparison involving the following functions: CCOL, COFF (except
when used in SUBSTR as discussed previously), CROW, C2D, E2D, NUMCOLS,
NUMROWS, RANDOM, and RNUM.
/***************/
/* NOT ALLOWED */
/***************/
onin crow() = 5 then ...

/***********/
/* ALLOWED */
/***********/
onin a = index(data,’test’) then ... /* "a" is an integer variable. */

v Any integer expression involving arithmetic where one or more operands are not
integer constants.
/***************/
/* NOT ALLOWED */
/***************/
onin count + 5 = 20 then ...
onin count = i + 20 then ... /* "i" is an integer variable. */

/***********/
/* ALLOWED */

© Copyright IBM Corp. 1983, 2015 503

/***********/
onin count = 1 + 5 then ...
onin count = 1 + d then ... /* "d" is an integer constant. */

v Any POSTED function or ON SIGNALED statement that specifies an event
name composed of hexadecimal string constants, a function reference, or
concatenation involving a string variable.
/***************/
/* NOT ALLOWED */
/***************/
onin posted(’ffff’x) then ...
onin posted(month()) then ...
on signaled(’hello’||mydata) then .../* "mydata" is a string */

/* variable. */

/***********/
/* ALLOWED */
/***********/
onin posted(’MARK’) then ...
on signaled(’MARK’||’IT’) then ...

v Any UTBLMAX function that references a user table that has not been
previously processed (in the same program) by the translator.

v Any USEREXIT statement.
v Any LENGTH function that specifies one of the following:

– A nonconstant string expression
– A string expression containing a hexadecimal string constant
– An integer variable.
/***************/
/* NOT ALLOWED */
/***************/
onin a = length(mydata) then ... /* "mydata" is a nonconstant */

/* string expression. */
onin a = length(’ffff’x) then ...
onin a = length(count) then ... /* "count" is an integer */

/* variable. */

/***********/
/* ALLOWED */
/***********/
onin a = length(d) then ... /* "d" is a string constant. */
onin a = length(5) then ...

v Any QUEUED function.
v Any string comparison involving the BITAND, BITOR, BITXOR, B2X, CENTER,

COPIES, C2X, DELWORD, D2C, LASTPOS, LEFT, OVERLAY, POS, REVERSE,
RIGHT, SPACE, STRIP, SUBWORD, WORD, WORDINDEX, WORDPOS,
WORDS, X2B, X2C, INSERT, DELSTR, DBCSADD, DBCSADJ, DBCSDEL,
DBCS2SB, SB2DBCS, SB2MDBCS, and TRANSLATE functions.
/***************/
/* NOT ALLOWED */
/***************/
onin c = c2x(’dfdf’) then ... /* "c" is a string variable. */

/***********/
/* ALLOWED */
/***********/
onin c = substr(buffer,1,1) then... /* "c" is a string variable. */

v ATTR3270 with integer expression that contains one or more variables.
/***************/
/* NOT ALLOWED */
/***************/

504 WSim Script Guide and Reference

onin atts = attr3270(offset) then ...
onin atts = attr3270(coff()-(offset+4)) then ...
onin atts = attr3270(rowcol(row+8,12)) then ...

/***********/
/* ALLOWED */
/***********/
onin atts = attr3270(50) then ...

Chapter 28. Expressions not allowed in asynchronous conditions 505

506 WSim Script Guide and Reference

Chapter 29. STL reserved words

This chapter contains a comprehensive list of STL reserved words. These words are
STL keywords, functions, and reserved variable names that may not be used as
user-defined variable or constant names.

@EJECT CMSEND EXECUTE OPCMND
@ENDGEN CMSERR E2D OTHERWISE
@ENDGENERATE CMSF FLDADV OVERLAY
@ENDNET CMSFM5 FLDBKSP PACE
@ENDNETWORK CMSLD FLDMINUS PA1-3
@ENDPROGRAM CMSMN FLDPLUS PF1-24
@GEN CMSPLN FM POS
@GENERATE CMSPTR FMI POST
@IFNUM CMSRC FOR POSTED
@INCLUDE CMSRT FOREVER PRINT
@NET CMSSL FPORTID PUID
@NETWORK CMSST HELP PULL
@PROGRAM CMSTPN HEX PUSH
ABORT CMTRTS HIGHLITE PU21ID
AFTER CNTLRID HOME QRI
ALL COFF ID QSIGNAL
ALLOCATE COLOR IF QUEC
AND CONSTANT INDEX QUEUE
APPCLUID COPIES INITOTH1 QUEUED
ATTR CPOS INITOTH2 QUIESCE
ATTR3270 CR INITSELF RANDOM
BADGE CROW INITSLF1 RELQ
BB CTAB INITSLF2 REPEAT
BID CURSOR INSERT RESET
BIS CURSRSEL INTEGER RESP
BIT C2D IO RETURN
BITAND C2X ITERATE REVERSE
BITOR DATA JUMP RH
BITXOR DATE LASTPOS RIDISC
BTAB DAY LASTVERB RIGHT
BUFFER DBCSADD LCHID RNDISC
BY DBCSADJ LCLEAR RNUM
B2X DBCSDEL LEAVE ROLLDOWN
CALL DBCS2SB LEFT ROLLUP
CANCEL DEACT LENGTH ROWCOL
CARD DELAY LIGHTPEN RSHUTD
CCOL DELETE LINID RTR
CDI DELSTR LINNAME RU
CEB DELWORD LLSID SAY
CENTER DEVID LOG SBI
CHAIN DIDO LOGGING SB2DBCS
CHAR DISPLAY LPORTID SB2MDBCS
CHARSET DO LUID SCREEN
CHASE DOWN LUSTAT SCROLL
CLEAR DR1 MAG10 SDT
CLEARPTN DR2 MAG10S SELECT
CMD1-24 DUP MAG63 SEND

© Copyright IBM Corp. 1983, 2015 507

CMACCP D2C MAG63S SENDLINE
CMALLC EB MCHID SENDMSG
CMCFM EDI MONITOR SEQNO
CMCFMD EFI MONTH SESSNO
CMDEAL ELSE MSGTXT SETRH
CMECS END MSGTXTID SETTH
CMECT ENDTXT MSGUTBL SHARED
CMEMN ENDUTBL NETID SHOW
CMEPLN ENTER NL SHUTD
CMESL EOMC NONE SIGNAL
CMFLUS EOMI NOP SIGNALED
CMINIT EOMPB NORESP SNACMND
CMND EOMS NTWKPRTY SNI
CMONTH EOT NUMCOLS SPACE
CMPTR EREOF NUMROWS SSCPID
CMRCV EREOS OFF STRING
CMRTS ERIN ON STRIP
CMSCT ESC ONIN STRIPE
CMSDT EVENT ONOUT SUBSTR
CMSED EXC ONS SUBWORD
SUSPEND
SYSREQ
TAB
TAG
TCPIPID
TERMID
TERMSELF
TERMSLF1
TGNFIFO
TGSWEEP
TH
THEN
TO
TOD
TPID
TPINSTNO
TRANSLATE
TRANSMIT
TYPE
UNBIND
UNSHARED
UNTIL
UP
USEREXIT
USING
UTBL
UTBLMAX
UTBLSCAN
UTI
VERIFY
VRCWI
VRCWRI
VRPACCNT
VRPRQ
VRPRS

508 WSim Script Guide and Reference

VRRWI
VTAMAPID
WAIT
WHEN
WHILE
WORD
WORDINDEX
WORDPOS
WORDS
WRU
XOFF
XON
X2B
X2C
YEAR

Chapter 29. STL reserved words 509

510 WSim Script Guide and Reference

Chapter 30. STL Variable and Named Constant Declarations
for CPI-C Verb Parameters

This chapter contains a comprehensive list of STL variable declarations for CPI
Communications (CPI-C) verb parameters. The declarations are contained in the
CPICVAR and CPICCON members of the samples dataset.

STL variable declarations for CPI-C verb parameters
/***/
/* STL variable declarations for CPI-C verb parameters */
/***/
/* String parameters */
string conversation_ID /* Conversation ID */
string mode_name /* Mode name */
string partner_LU_name /* Partner LU name */
string sym_dest_name /* Symbolic dest name */
string TP_name /* TP name */
string log_data /* log data */
string send_buffer /* send buffer */
string receive_buffer /* receive buffer */
string fmh5_extension /* fmh5_extension */
/***/
/* Integer parameters */
integer conversation_state /* Conversation state */
integer conversation_type /* Conversation type */
integer data_received /* Data received */
integer deallocate_type /* Deallocate type */
integer error_direction /* Error direction */
integer fill /* Fill value */
integer log_data_length /* Log data length */
integer mode_name_length /* Mode name length */
integer partner_LU_name_length /* Partner LU name length*/
integer prepare_to_receive_type /* Prepare to RCV type */
integer receive_type /* Receive type */
integer received_length /* Received length */
integer request_to_send_received /* Request-to-send rcvd */
integer requested_length /* Requested length */
integer return_code /* Return code */
integer return_control /* Return control */
integer send_length /* Send length */
integer send_type /* Send type */
integer status_received /* Status received */
integer sync_level /* Sync-level */
integer TP_name_length /* TP name length */
integer fmh5_extension_length /* fmh5_extension_length */
/***/

STL named constant declarations for CPI-C verb parameters
/***/
/* STL named constant declarations for CPI-C verb parameters */
/***/
/* Conversation states */
constant cm_initialize_state 2 /* Initialize state */
constant cm_send_state 3 /* Send state */
constant cm_receive_state 4 /* Receive state */
constant cm_send_pending_state 5 /* Send-pending state */
constant cm_confirm_state 6 /* Confirm state */
constant cm_confirm_send_state 7 /* Confirm send state */
constant cm_confirm_deallocate_state 8 /* Confirm deallocate */

© Copyright IBM Corp. 1983, 2015 511

constant cm_defer_receive_state 9 /* Defer receive state */
constant cm_defer_deallocate_state 10 /* Defer deallocate state */
/***/
/* Conversation types */
constant cm_basic_conversation 0 /* Basic conversation */
constant cm_mapped_conversation 1 /* Mapped conversation */
/***/
/* Data received values */
constant cm_no_data_received 0 /* No data received */
constant cm_data_received 1 /* Data received */
constant cm_complete_data_received 2 /* Completed data received*/
constant cm_incomplete_data_received 3 /* Incomplete data rcvd */
/***/
/* Deallocate types */
constant cm_deallocate_sync_level 0 /* Deallocate sync-level */
constant cm_deallocate_flush 1 /* Deallocate flush */
constant cm_deallocate_confirm 2 /* Deallocate confirm */
constant cm_deallocate_abend 3 /* Deallocate abend */
/***/
/* Error direction */
constant cm_send_error 0 /* Send error */
constant cm_receive_error 1 /* Receive error */
/***/
/* Fill values */
constant cm_fill_ll 0 /* Fill LL */
constant cm_fill_buffer 1 /* Fill buffer */
/***/
/* Prepare-to-receive types */
constant cm_prep_to_receive_sync_level 0 /* Sync-level */
constant cm_prep_to_receive_flush 1 /* Flush */
constant cm_prep_to_receive_confirm 2 /* Confirm */
/***/
/* Receive types */
constant cm_receive_and_wait 0 /* Receive and wait */
constant cm_receive_immediate 1 /* Receive immediate */
/***/
/* Request-to-send received values */
constant cm_req_to_send_not_received 0 /* Req-to-send not rcvd */
constant cm_req_to_send_received 1 /* Req-to-send rcvd */
/***/
/* Return codes */
constant cm_ok 0 /* OK */
constant cm_allocate_failure_no_retry 1 /* Alloc failure- no retry*/
constant cm_allocate_failure_retry 2 /* Alloc failure- retry */
constant cm_conversation_type_mismatch 3 /* Conv type mismatch */
constant cm_pip_not_specified_correctly 5 /* PIP not spec correctly */
constant cm_security_not_valid 6 /* Security not valid */
constant cm_sync_lvl_not_supported_lu 7 /* Sync-level not supp-LU */
constant cm_sync_lvl_not_supported_pgm 8 /* Sync-level not supp-pgm*/
constant cm_tpn_not_recognized 9 /* TP name not recognized */
constant cm_tp_not_available_no_retry 10 /* TP not avail- no retry */
constant cm_tp_not_available_retry 11 /* TP not avail- retry */
constant cm_deallocated_abend 17 /* Deallocate abend */
constant cm_deallocated_normal 18 /* Deallocate normal */
constant cm_parameter_error 19 /* Parameter error */
constant cm_product_specific_error 20 /* Product specific error */
constant cm_program_error_no_trunc 21 /* Program error- no trunc*/
constant cm_program_error_purging 22 /* Program error- purging */
constant cm_program_error_trunc 23 /* Program error- trunc */
constant cm_program_parameter_check 24 /* Program error- parm chk*/
constant cm_program_state_check 25 /* Program state check */
constant cm_resource_failure_no_retry 26 /* Rsrce failure- no retry*/
constant cm_resource_failure_retry 27 /* Resource failure- retry*/
constant cm_unsuccessful 28 /* Unsuccessful */
constant cm_deallocated_abend_svc 30 /* Deallocated abend SVC */
constant cm_deallocated_abend_timer 31 /* Deallocated abend timer*/
constant cm_svc_error_no_trunc 32 /* SVC error- no truncate */

512 WSim Script Guide and Reference

constant cm_svc_error_purging 33 /* SVC error- purging */
constant cm_svc_error_trunc 34 /* SVC error- truncate */
/***/
/* Return control values */
constant cm_when_session_allocated 0 /* When session allocated */
constant cm_immediate 1 /* Immediate */
/***/
/* Send types */
constant cm_buffer_data 0 /* Buffer data */
constant cm_send_and_flush 1 /* Send and flush */
constant cm_send_and_confirm 2 /* Send and confirm */
constant cm_send_and_prep_to_receive 3 /* Send and prep-to-rcv */
constant cm_send_and_deallocate 4 /* Send and deallocate */
/***/
/* Status received values */
constant cm_no_status_received 0 /* No status received */
constant cm_send_received 1 /* Send received */
constant cm_confirm_received 2 /* Confirm received */
constant cm_confirm_send_received 3 /* Confirm send received */
constant cm_confirm_dealloc_received 4 /* Confirm deallocate rcvd*/
/***/
/* Sync levels */
constant cm_none 0 /* None */
constant cm_confirm 1 /* Confirm */
/***/

Chapter 30. STL Variable and Named Constant Declarations for CPI-C Verb Parameters 513

514 WSim Script Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1983, 2015 515

516 WSim Script Guide and Reference

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM® Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1983, 2015 517

Trademarks and service marks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

IBM IMS™ MVS™

MVS/SP OS/390® SAA
Series/1 SP System/370
VTAM® Systems Application

Architecture®

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

518 WSim Script Guide and Reference

Glossary

This glossary includes terms and definitions from
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems,
GC20-1699-6. Further definitions are from the
following volumes and reports. The symbols
follow the definitions to which they refer.
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are
identified by the symbol (A) after the
definition.

v Definitions from draft proposals and working
papers under development by the International
Standards Organization, Technical Committee
97, Subcommittee 1 are identified by the
symbol (TC97).

v Definitions from draft international standards,
draft proposals, and working papers in
development by the ISO/TC97/SC1 are
identified by the symbol (T), indicating final
agreement has not yet been reached among
participating members.

v Definitions from the CCITT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the
International Consultative Committee on
Telegraph and Telephone of the International
Telecommunication Union, Geneva, 1980 are
identified by the symbol (CCITT/ITU).

v Definitions from published sections of the ISO
Vocabulary of Data Processing, developed by the
International Standards Organization, Technical
Committee 97, Subcommittee 1 and from
published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of
ISO Technical Committee 95, are indicated by
the symbol (ISO).

A

AID Attention identifier.

American National Standard Code for
Information Interchange (ASCII)

The standard code, using a coded
character set consisting of 7-bit coded
characters (8 bits including parity check),

used for information interchange among
data processing systems, data
communication systems, and associated
equipment. The ASCII set consists of
control characters and graphic
characters. (A)

American National Standards Institute (ANSI)
An organization consisting of producers,
consumers, and general interest groups,
that establishes the procedures by which
accredited organizations create and
maintain voluntary industry standards in
the United States. (A)

ANSI American National Standards Institute.

Application Programming Interface (API)
(1) The formally defined programming
language interface between an IBM
system control program or licensed
program and its user. (2) The interface
through which an application program
interacts with an access method. In
VTAM, it is the language structure used
in control blocks so that application
programs can reference them and be
identified to VTAM.

arithmetic operator
An operator that involves addition (+),
subtraction (-), multiplication (*), division
(/), or remainder division (//).

ASCII American National Standard Code for
Information Interchange.

asynchronous condition
A condition that is tested outside the flow
of normal program execution.

asynchronous subset statement
An asynchronous statement that can be
executed when an asynchronous
condition is satisfied on an ONIN,
ONOUT, or ON SIGNALED statement.
Asynchronous subset statements are
executed during the transmit interrupt.

asynchronous statement
A statement whose actions occur outside
the flow of normal program execution.

attention identifier (AID)
A code that the terminal sends in the
inbound data stream to identify the

© Copyright IBM Corp. 1983, 2015 519

operator action or structured field
function that caused the data stream to be
sent to the application program. An AID
is always sent as the first byte of the
inbound data stream. Structured fields in
the data stream may also contain an AID.

available
In VTAM, pertaining to a logical unit that
is active, connected, enabled, and not at
its session limit.

B

bind In SNA, a request to activate a session
between two logical units (LUs).

bit condition
A condition that tests for the equality or
inequality of a bit variable.

bit constant
A constant whose value can be either ON
or OFF.

bit expression
An expression that, when evaluated, can
have the values ON or OFF.

bit variable
A variable that can take on one of two
possible values: ON or OFF.

C

carriage return (CR)
The operation that prepares for the next
character to be printed or displayed at the
specified first position on the same
line. (A)

CCC Copy control character.

CD Change direction.

chain A group of logically linked records, for
example, an SNA message.

character set
(1) A defined collection of characters in a
loadable or nonloadable set selected by
means of a local character set identifier.
(2) An attribute type in the extended field
and character attributes. (3) An attribute
passed between session partners in the
Start Field Extended, Modify Field, and
Set Attribute orders.

Common Programming Interface for
Communications (CPI-C)

In WSim, an application programming
interface (API) used to perform

program-to-program communications
using LU type 6.2 communication
protocols. An evolving application
programming interface (API), embracing
functions to meet the growing demands
from different application environments
and to achieve openness as an industry
standard for communications
programming. CPI-C provides access to
interprogram services such as (a) sending
and receiving data, (b) synchronizing
processing between programs, and (c)
notifying a partner of errors in the
communication.

complex condition
A condition involving two or more
relational expressions joined by logical
operators.

condition
One or more relational expressions that
are evaluated to be either true or false.

constant
A value that does not change in the
course of program execution.

CPI-C Common programming interface for
communications.

CR Carriage return.

D

data flow control (DFC)
In SNA, a request/response unit (RU)
category used for requests and responses
exchanged between the data flow control
layer in one half-session and the data
flow control layer in the session partner.

data set
The major unit of data storage and
retrieval, consisting of a collection of data
in one of several prescribed arrangements
and described by control information to
which the system has access.

data set members
Members of partitioned data sets that are
individually named elements of a larger
file that can be retrieved by name.

data terminal equipment (DTE)
That part of a data station that serves as a
data source, data link, or both, and
provides for the data communications
control function according to protocols.
(TC97)

520 WSim Script Guide and Reference

DBCS Double-byte character set.

DBCS subfield
DBCS data identified with SO and SI
characters.

ddname
Data definition name.

destination logical unit (DLU)
The logical unit to which data is to be
sent. Contrast with origin logical unit
(OLU).

DFC Data flow control.

DLU Destination logical unit.

double-byte character set (DBCS)
A set of characters in which each
character is represented by two bytes.
Languages such as Japanese, Chinese, and
Korean, which contain more symbols that
can be represented by 256 code points,
require double-byte character sets.
Because each character requires two bytes,
the typing, display, and printing of DBCS
characters requires hardware and
programs that support DBCS.

E

EB End bracket.

EBCDIC
Extended binary-coded decimal
interchange code.

EDI Enciphered data indicator.

enciphered data indicator (EDI)
Information to be supplied.

end bracket (EB)
In SNA, the value (binary 1) of the end
bracket indicator in the request header
(RH) of the first request of the last chain
of a bracket; the value denotes the end of
the bracket.

event (1) An occurrence of significance to a task;
typically, the completion of an
asynchronous operation, such as an
input/output operation. (2) In WSim, a
named indicator/flag which can be used
for communications among terminal
scripts.

event dictionary
Information included at the end of the
printed listing produced by the STL

Translator that lists all event names as
well as the type of event and where it is
referenced.

execute procedure
A procedure containing a limited subset
of STL statements that is executed outside
the flow of normal program execution.

expression
A variable, constant, function, or any
combination of these joined by arithmetic
operators (for integers) or string operators
(for strings).

extended binary-coded decimal interchange code
(EBCDIC)

A coded character set of 256 8-bit
characters.

extended field attribute
Additional field definition to the field
attribute that controls defining additional
properties such as color, highlighting,
character set, and field validation. The
extended field attribute is altered by
information passed in the Start Field
Extended and Modify Field orders.

F

facility
(1) An operational capability, or the
means for providing such a capability. (T)
(2) A service provided by an operating
system for a particular purpose; for
example, the checkpoint/restart facility.

FID SNA format identification.

File Transfer Protocol (FTP)
In the Internet suite of protocols, an
application layer protocol that uses TCP
and Telnet services to transfer bulk-data
files between machines or hosts.

FM Function management.

FMD Function management data.

format identification (FID) field
In SNA, a field in each transmission
header (TH) that indicates the format of
the TH; that is, the presence or absence of
certain fields. TH formats differ in
accordance with the types of nodes
between which they pass.

FTP File transfer protocol.

function management data (FMD)
In SNA, a request unit (RU) category

Glossary 521

used for end-user data exchanged
between logical units (LUs) and for
requests and responses exchanged
between network services components of
LUs, physical units (PUs), and system
services control points (SSCPs).

H

hexadecimal string constant
A string constant that contains
hexadecimal characters.

I

ILU Initiating logical unit.

IMS/VS
Information Management System/Virtual
Storage.

Information Management System/Virtual
Storage (IMS/VS)

A general purpose system that enhances
the capabilities of OS/VS for batch
processing and telecommunication and
allows users to access a
computer-maintained data base through
remote terminals.

initiating logical unit (ILU)
The logical unit that initiates a session
with another logical unit or between two
other logical units.

input/output (I/O)
(1) Pertaining to a device whose parts can
perform an input process and an output
process at the same time. (2) Pertaining to
a functional unit or channel involved in
an input process, output process, or both,
concurrently or not, and to the data
involved in such a process. Note: The
phrase input/output may be used in place of
input/output data, input/output signals, and
input/output process when such a usage is
clear in context. (3) Pertaining to input,
output, or both.

instance
A copy of a transaction program that is
operating on a given logical unit. If
multiple instances are supported on a
logical unit, multiple copies of the same
transaction program can operate
simultaneously.

integer condition
A condition that tests an integer variable.

integer constant
A constant whose value can be a positive
decimal integer from 0 to 65535.

integer constant expression
An integer expression involving only
integer constants and integer operators.

integer expression
An expression composed of integer
variables or constants that can be joined
by arithmetic operations.

integer variable
A variable that can take on any positive
integer value from 0 to 65535.

intermessage delay
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered. It
is synonymous with the time a real
operator requires to think about what to
do next.

I/O Input/output.

J

JCL Job control language.

job control language (JCL)
A problem-oriented language designed to
express statements in a job that are used
to identify the job or describe its
requirements to an operating system. (A)

L

label A statement identifier that enables the
referencing of that statement from
elsewhere in a program.

line feed (LF)
The incremental relative movement
between the paper carrier and the type
carrier in a direction perpendicular to the
writing line.

literal text DBCS data
DBCS data with SO and SI characters
wrapped around it.

log data set
The data set WSim uses to record
activities that occur during a simulation.

logical operator
An operator that establishes a relationship
between two or more simple conditions,
forming a complex condition.

522 WSim Script Guide and Reference

logical unit (LU)
(1) A port through which a user gains
access to the services of a network. (2) In
SNA, a port through which an end user
accesses the SNA network and the
functions provided by system services
control points (SSCPs). An LU can
support at least two sessions—one with
an SSCP and one with another LU—and
may be capable of supporting many
sessions with other logical units.

logic test
In WSim, a conditional test on an input or
output message, a counter, or other item
using the ¬IF statement. The IF actions
can be used to control the message
generation process.

Loglist Utility
A utility that enables WSim to produce a
formatted report of the log data set.

LU Logical unit.

LUSTAT
Logical unit status.

M

message generation
In WSim, the process of executing
statements that generate messages from
the resources being simulated by WSim.

message generation deck
A collection of message generation
statements, beginning with a MSGTXT
statement and ending with an ENDTXT
statement.

message generation statements
The collection of statements that define
the actions to be performed by WSim,
including message generation and logic
testing.

module
A program unit that is discrete and
identifiable with respect to compiling,
combining with other units, and loading;
for example, the input to, or output from,
an assembler, compiler, linkage editor, or
executive routine. (A)

MTRC
Message generation trace record.

Multiple Virtual Storage (MVS)
An IBM licensed program whose full
name is the Operating System/Virtual

Storage (OS/VS) with Multiple Virtual
Storage/System Product for System/370*.
It is a software operating system
controlling the execution of programs.

MVS Multiple Virtual Storage.

N

named constant
An integer or string constant that is
defined using the INTEGER or STRING
statement.

NC Network control.

NCB Network control block.

network control block (NCB)
A WSim control block containing
information about simulated networks.

network definition
A collection of network definition
statements that defines the terminals
being simulated and the various options
used for different lines, terminals, and
devices that make up the simulated
system.

network definition statements
A collection of statements that defines the
network configuration WSim simulates
when processing the message generation
source statements.

network services (NS)
In SNA, the services within network
addressable units (NAUs) that control
network operation through SSCP-SSCP,
SSCP-PU, and SSCP-LU sessions.

O

operating system (OS)
Software that controls the execution of
programs. An operating system may
provide services such as resource
allocation, scheduling, input/output
control, and data management. Note:
Although operating systems are
predominantly software, partial or complete
hardware implementations are possible. (A)

operator
A symbol representing an action to be
performed on two items.

OS Operating system.

Glossary 523

P

PA Program attention.

partitioned data set (PDS)
A data set in direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

path information unit (PIU)
In SNA, a message unit consisting of a
transmission header (TH) alone, or of a
TH followed by a basic information unit
(BIU) or a BIU segment.

PF Program function.

PIU Path information unit.

PLU Primary logical unit.

posting
The act of indicating that a named event
has occurred. The notification is available
to any terminal that inquires about the
event and is in effect until explicitly reset.

primary logical unit (PLU)
In SNA, the logical unit (LU) that
contains the primary half-session for a
particular LU-LU session. Each session
must have a PLU and secondary logical
unit (SLU). The PLU is the unit
responsible for the bind and is the
controlling LU for the session. A
particular LU may contain both primary
and secondary half-sessions for different
active LU-LU sessions. Contrast with
secondary logical unit (SLU).

printed listing
A listing created by the STL Translator
that contains the message generation
statements the translator produces, the
STL input source lines, the variable
dictionary, the event dictionary, and the
WSim Preprocessor output.

procedure
A group of statements, beginning with a
MSGTXT statement and ending with and
ENDTXT statement, that performs a
specific task.

program
A group of procedures and declarative
statements that contain all the instructions
required to accomplish a specific task.

programmed symbols (PS)
In the 3270 Information Display System,

an optional feature that stores up to six
user-definable, program-loadable
character sets of 190 characters each in
terminal read/write storage for display or
printing by the terminal.

PS Programmed symbols.

PSID Product Set ID.

PU Physical unit.

R

record (1) A set of data treated as a unit (TC97);
for example, in stock control, each invoice
could constitute one record. (2) In VTAM,
the unit of data transmission for
record-mode. A record represents
whatever amount of data the transmitting
node chooses to send. (3) In Series/1*, a
portion of a data set accessed at the
logical level (GET/PUT).

relational expression
An expression involving one or more
relational operators.

relational operator
An operator that establishes a relationship
between expressions.

request/response header (RH)
In SNA, control information preceding a
request/response unit (RU), that specifies
the type of RU (request unit or response
unit) and contains control information
associated with that RU.

request/response unit (RU)
In SNA, a generic term for a request unit
or a response unit.

request unit (RU)
(1) In SNA, a message unit that contains
control information, such as a request
code, or function management (FM)
headers, end-user data, or both. (2) In
DPCX, the smallest unit of data or control
information.

reserved word
A word that has a special meaning in STL
and cannot be used in a different context.
Reserved words include keywords,
function names, special reserved
variables, and bit values.

resource
(1) Any facility of the computing system
or operating system required by a job or

524 WSim Script Guide and Reference

task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs. (2) In the NetView program,
any hardware or software that provides
function to the network.

response unit (RU)
In SNA, a message unit that
acknowledges a request unit; it may
contain prefix information received in a
request unit. If positive, the response unit
may contain additional information (such
as session parameters in response to
BIND session), or if negative, contains
sense data defining the exception
condition.

return code
A code used to influence the execution of
succeeding instructions. (A)

RH Request header or response header.

RNR Receive not ready.

RR Receive ready.

RU Request unit or response unit.

S

SA Set attribute.

SAP Service access point.

SBCS Single-byte character set.

SBI Stop Bracket Initiation.

SC Session Control.

script See WSim script.

SDT Start data traffic.

secondary logical unit (SLU)
In SNA, the logical unit (LU) that
contains the secondary half-session for a
particular LU-LU session. An LU may
contain secondary and primary
half-sessions for different active LU-LU
sessions. Contrast with primary logical
unit (PLU).

session control (SC)
In SNA, (1) One of the components of
transmission control. Session control is
used to purge data flowing in a session
after an unrecoverable error occurs, to
resynchronize the data flow after such an
error, and to perform cryptographic
verification. (2) A request unit (RU)

category used for requests and responses
exchanged between the session control
components of a session and for session
activation and deactivation requests and
responses.

shared variable
A variable that can be used by all
terminals in a network.

SI Shift In. Used with DBCS. This is the
X'0F' character that ends DBCS data.

signaling
The act of indicating that a named event
has occurred. Unlike posting, the notice
cannot be consulted later to determine if
the event occurred.

simple condition
A condition involving a single relational
expression.

SLU Secondary logical unit.

SNA Systems Network Architecture.

SO Shift Out. Used with DBCS. This is the
X'0E' character that begins DBCS data.

statement
An object in STL made up of variables,
constants, keywords, function names,
operators, punctuation, labels, MSGTXT
names, and MSGUTBL names. A
statement can declare variable types and
classes, assign a value to a variable, or
control the execution of the program.

STL Structured Translator Language.

STL Translator
In WSim, a utility that acts as the STL
translator and translates STL statements
into message generation source
statements.

STRC STL trace record.

string condition
A condition involving string expressions.

string constant
A constant whose value can be any set of
characters enclosed in single or double
quotation marks.

string constant expression
An expression composed of string
constants joined by string operators.

string expression
An expression composed of string

Glossary 525

variables, string constants, or hexadecimal
string constants that can be joined by
string operators.

string operator
An operator that involves concatenation
of two strings. || concatenates two
strings as is and a blank (X'40') joins them
with an intervening blank.

string variable
A variable that can only contain
characters.

Structured Translator Language (STL)
A set of conventions and rules for writing
syntactically allowable statements that
will create message generation source
statements.

Systems Network Architecture (SNA)
The description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through and controlling the
configuration and operation of networks.

T

TCP/IP
Transmission Control Protocol/Internet
Protocol. A set of communication
protocols that support peer-to-peer
connectivity functions for both local and
wide area networks.

TH Transmission header.

think time
The elapsed time between receipt of a
system response at a terminal and the
time when a new transaction is entered.
Synonym for intermessage delay.

time sharing option (TSO)
An optional configuration of the
operating system that provides
conversational time sharing from remote
stations in a network using VTAM.

TP Transaction program.

transaction program (TP)
In WSim, any program that uses LU type
6.2 communication protocols to
communicate with another program.
Transaction programs are implemented in
WSim using the CPI-C application
program interface.

transmission header (TH)
In SNA, control information, optionally
followed by a basic information unit
(BIU) or a BIU segment, that is created
and used by path control to route
message units and to control their flow
within the network.

transmit interrupt
An interruption of program execution that
occurs when accumulated message data is
sent to the host system.

TSO Time sharing option.

U

unshared variable
A variable that can be used only by
individual terminals in a network. Each
terminal has its own private copy of an
unshared variable.

user exit
A specialized routine, written by the user,
to customize WSim to meet a unique
requirement.

user table
In WSim, one or more text data entries
contained in a table format which may be
referenced for logic testing and message
generation.

UTI User time interval.

V

variable
A data item that is used in a program in a
certain way, but whose value can vary. In
a program, each variable has a unique
symbolic name.

variable dictionary
Information included at the end of the
printed listing produced by the STL
Translator that lists the names of all
variables as well as the variable's type,
class, to which WSim resource it maps,
where it is defined, and where it is
referenced.

Virtual Telecommunications Access Method
(VTAM)

An IBM licensed program that controls
communication and the flow of data in an
SNA network. It provides single-domain,
multiple-domain, and interconnected
network capability.

526 WSim Script Guide and Reference

VTAM
Virtual Telecommunications Access
Method.

W

ward 42
The portion of DBCS codes that
corresponds to those of SBCS. The first
byte is X'42'. The second byte is the
hexadecimal value of the corresponding
single-byte EBCDIC code.

ward byte
The first byte of each DBCS character.

work variable
A WSim save area, counter, or switch
used by the STL Translator when
translating an STL program that does not
map to an STL variable name.

write-to-operator (WTO)
An optional user-coded service that
enables the writing of a message to the
system console operator that informs the
operator of errors and unusual system
conditions that may need correcting.

WSF Write structured field.

WSim Display Monitor Facility
A VTAM application program within
WSim that displays simulated 3270 screen
images on a monitor. It is used to monitor
a simulation dynamically, enabling a user
to debug scripts and view interactions
with host applications.

WSim network
The set of statements defining an entire
network, including both the network
definition statements and the message
generation source statements. Should not
be confused with a packet switching
network.

WSim script
The set of statements defining an entire
network, including both the network
definition statements and the message
generation source statements.

WTO Write-to-operator.

X

XID Exchange identification.

Glossary 527

528 WSim Script Guide and Reference

Bibliography

The following manuals provide additional information about the definition and
operation of networks simulated by WSim:

WSim Library
WSim User's Guide, SC31-8948

WSim Messages and Codes, SC31-8951

WSim Test Manager User's Guide and Reference, SC31-8949

Creating WSim Scripts, SC31-8945

WSim Script Guide and Reference, SC31-8946

WSim Utilities Guide, SC31-8947

WSim User Exits, SC31-8950

Related publications
Systems Application Architecture Common Programming Interface Communications
Reference, SC26-4399-06. (WSim does not support CPI-C functions that have been
added in later releases of this document.)

VTAM Programming for LU 6.2, SC31-6437.

© Copyright IBM Corp. 1983, 2015 529

530 WSim Script Guide and Reference

Index

Special characters
- operatpr 248
/ operator 248
// operator 248
* operator 248
@EJECT statement 355
@ENDGENERATE statement 251, 355,

357
@ENDNETWORK statement 360
@ENDPROGRAM statement 318, 361
@GENERATE statement 251, 355, 357
@IFNUM statement 334, 357, 358
@INCLUDE statement 252, 358
@NETWORK statement 360
@PROGRAM statement 318, 361
> operator 262
>< operator 262
>= operator 262
< operator 262
<> operator 262
<= operator 262
| relational operator 265
|| operator 248
& relational operator 265
&= operator 262
+ operator 248
= operator 262
=> operator 262
=< operator 262
¬> operator 262
¬< operator 262
¬= operator 262

Numerics
3270 screen attributes

described 277
using ATTR3270 function to

identify 277

A
ABORT statement 294, 362
AID keys

coding on a TRANSMIT
statement 286

list of AID keys that can be
simulated 285

specific devices, keys that can be
simulated for 501

transmitting message with 285
ALC support 286, 442
ALLOCATE statement 246, 363
allocating WSim resources 246, 334
ALTCSET operand

DEV (TCP/IP) statement 90
LU (VTAMAPPL) statement 74

APL operand (CHARSET statement) 110
APLCSID operand

DEV (TCP/IP) statement 90

APLCSID operand (continued)
LU (VTAMAPPL) statement 74

APPCLU statement 60
APPCLUID data field option 199
APPCLUID function 449
application program password, defining

CPI-C 60
VTAM 85

APPLID operand
APPCLU statement 60
VTAMAPPL statement 85

AREA operand
DATASAVE statement 129
IF (message generation)

statement 154
IF (network configuration)

statement 31
LOG statement 167

assignment statements, use of 234
ASSOC operand (DEV (TCP/IP)

statement) 90
asynchronous conditions

expressions not allowed in,
listed 503

reserved variables, using in 239
restrictions on expressions in 299
restrictions on the SUBSTR function

in 299
setting up 299
testing 291

asynchronous statements
defined 291
listed 292

asynchronous subset statements
ABORT statement 294, 362
CALL statement 294, 365
CANCEL statement 296, 366
defined 294
EXECUTE statement 294, 406
listed 294
NORESP statement 296, 418

ATRABORT operand
DEV (TCP/IP) statement 90
LU (VTAMAPPL) statement 74

ATRDECK network definition operand,
defining programs used 329

ATRDECK operand
DEV (TCP/IP) statement 91
LU (VTAMAPPL) statement 75

attention key 271
ATTR data field option 199
ATTR3270 function 277, 449
automating the test

OPCMND statement 309, 421
operator commands, including in STL

programs 308

B
B2X function 131, 457
back tab key statement 106

back tab key, simulating 106
BASECSID operand

DEV (TCP/IP) statement 91
LU (VTAMAPPL) statement 75

BB operand 179
bit

condition, defined 262
constant, defined 241
expression, defined 249
variable, defined 238

BIT statement 364
BITAND function 130, 455
BITOR function 131, 455
BITXOR function 131, 456
BLOCK operand (LOG statement) 167
BRANCH statement 106
BTAB statement 106, 365
BUFFER 239
BUFSIZE operand

APPCLU statement 60
TCPIP statement 101
VTAMAPPL statement 85

building user data table 55

C
C2D function 462
C2X function 462
CALC statement 107
calculating a value in save area or user

area 107
CALL statement 108

asynchronous subset statement 294,
365

structured flow-of-control
statement 255, 365

call subroutine statement 108
calling a subroutine 108
Cancel Event statement 109
CANCEL statement 109

asynchronous subset statement 296,
366, 368

used to cancel events 305, 366, 368
canceling

delays 296
events 305

CCOL function 277, 457
CCSIZE operand

DEV (TCP/IP) statement 91
LU (VTAMAPPL) statement 75

CDI operand 179
CEB operand 179
CENTER function 131, 458
CHAIN operand (RH statement) 178
CHAINING operand (LU (VTAMAPPL)

statement) 75
changing message generation paths 106
CHAR function 458
character set select statement 109
character set, selecting 109

© Copyright IBM Corp. 1983, 2015 531

CHARS operand (DELETE
statement) 140

CHARSET statement 109, 368
CLEAR AID key 285
Clear key statement 110
Clear key, simulating 110
Clear Partition key statement 111
Clear Partition key, simulating 111
CLEAR statement 110
CLEARPTN AID key 285
CLEARPTN statement 111
CLIST

using to run STL Translator 322
CMACCP statement 120, 369
CMALLC statement 120, 369
CMCFM statement 120, 370
CMCFMD statement 120, 371
CMD statement 111
CMD1-24 AID keys 285
CMDEAL statement 120, 372
CMECS statement 120, 372
CMECT statement 120, 373
CMEMN statement 120, 374
CMEPLN statement 120, 375
CMESL statement 120, 375
CMFLUS statement 120, 376
CMINIT statement 120, 377
CMND statement 112, 118
CMONTH data field option 200
CMONTH function 459
CMPTR statement 120, 378
CMRCV statement 121, 378
CMRTS statement 380
CMSCT statement 121, 381
CMSDT statement 121, 381
CMSED statement 121, 382
CMSEND statement 121, 383
CMSERR statement 121, 384
CMSF statement 120, 385, 386
CMSFM5 statement 120
CMSLD statement 121, 387
CMSMN statement 121, 388
CMSPLN statement 121, 389
CMSPTR statement 121, 390
CMSRC statement 121, 390
CMSRT statement 121, 391
CMSSL statement 121, 392
CMSST statement 121, 393
CMSTPN statement 121, 393
CMTRTS statement 121, 394
CMxxxx CPI-C simulation

statements 105, 118, 120
CNOS operand (APPCLU statement) 61
CNTLRID data field option 200
CNTR data field option 200
CNTRS operand (NTWRK statement) 43
CNTRSEED operand (NTWRK

statement) 43
CNTRX data field option 200
CODE operand (HELP statement) 148
coding conventions

comments 5
continuing statements 5
continuing text operands 5
Name field 3
operands 4
overview 3

coding conventions (continued)
with TSO 4

COFF function 277, 459
color for display, selecting 124
COLOR operand

DEV (TCP/IP) statement 91
LU (VTAMAPPL) statement 76

COLOR statement 124, 395
COLUMN operand

CURSOR statement 125
SELECT statement 181

combining procedures from different STL
programs

declaring variables for 333
example of 334
numbering IF statements for 334
reasons for 333

COMMAND operand
CMND statement 112
FE statement 24

comments
coding 236
documenting STL programs

using 231
nesting 236

comments, coding of 5
comparing data

IF (network configuration)
statement 27

concatenation, string expressions 248
CONCHAR operand (MSGTXT

statement) 169
COND operand

IF (message generation)
statement 155

IF (network configuration)
statement 32

conditional tab statement 125
conditions

bit
comparisons by shorthand 263
defined 262

complex
defined 262, 265
examples of 265

defined 261
integer, defined 263
relational operators 262
simple

defined 262
syntax of 262

string, defined 263
test under mask 264

conditions under which logic test is not
evaluated 217

CONRATE operand (NTWRK
statement) 43

CONSTANT statement 243, 396
constants

named
declaring 243
defined 241

operators, string constants 240
types

bit, defined 241
hexadecimal string, defined 241
integer, defined 239

constants (continued)
types (continued)

string, defined 240
continuation of statements 234
continuation statements 5
control block paging data set definition

statement 40
conversation

accepting 369
allocating 369
confirming 370, 371
deallocate type 381
deallocating 372
error direction 382
FM header 5 extension 386
initializing 377
log data 387
mode name 388
partner LU name 375, 389
prepare to receive 378, 390
receive type 391
request-to-send received 378, 383,

384, 394
return control 390
send type 393
state 372
symbolic destination name 377
synchronization level 375, 392
TP name 393
type 373, 374, 381

CONVERT operand (DATASAVE
statement) 129

COPIES function 131, 460
COUNT operand

DATASAVE statement 129
MSGTXT statement 169

counter allocation 213
counters 238
CPI-C 253

APPCLU as a VTAM application
program

password 60
symbolic name, defining 60

transaction program
defining 64

CPI-C verbs
defining 369, 394
using 253

CPICCON CPI-C constants 511
CPICVAR CPI-C variables 511
CPITRACE operand (TP statement) 64
CPOS function 277, 460, 461
CRDATALN operand

DEV (TCP/IP) statement 92
LU (VTAMAPPL) statement 76

CROW function 277, 461
CTAB statement 125, 397
cursor movement, simulating 270
CURSOR operand

IF (message generation)
statement 151

IF (network configuration)
statement 28

cursor position
functions used to identify 277

cursor positioning keys, simulating 125
Cursor Select key statement 127

532 WSim Script Guide and Reference

CURSOR statement 125, 270, 397, 398
CURSRSEL AID key 285
CURSRSEL statement 127, 269, 398
CWL operand (APPCLU statement) 61
CWP operand (APPCLU statement) 61
CYCLIC operand (PATH statement) 51

D
D2C function 467
DATA 239
data field options 199, 209
DATA operand

CMND statement 113
FILE statement 25

DATASAVE operand
IF (message generation)

statement 155
IF (network configuration)

statement 32
DATASAVE statement 128, 138
date and time

functions for providing 273
obtaining 273

DATE data field option 200
DATE function 463
date functions

listed 274
using 273

DAY data field option 201
DAY function 464
DBCS data, simulating 271
DBCS operand

DEV (TCP/IP) statement 92
LU (VTAMAPPL) statement 76

DBCS, logic testing 272
DBCS2SB function 465
DBCS2SB function (DATASAVE

statement) 133
DBCSADD function 464
DBCSADD function (DATASAVE

statement) 132
DBCSADJ function 465
DBCSADJ function (DATASAVE

statement) 132
DBCSCSID operand

DEV (TCP/IP) statement 92
LU (VTAMAPPL) statement 76

DBCSDEL function 465
DBCSDEL function (DATASAVE

statement) 132
DDNAME operand

MSGDISK statement 41
NTWRKLOG statement 50

DEACT statement 138
deactivating ON SIGNALED

conditions 304
deactivating ONIN and ONOUT

conditions 293
described 399, 400

deactivate logic test statement 138
declarative statements

allocating WSim resources using 246
coding, placement of 242
constants, declaring names 243
use of 234, 242
user tables, declaring 244

defining user exits 253
DELAY network definition operand,

using to control intermessage
delay 289

DELAY operand
DEV (TCP/IP) statement 92
IF (message generation)

statement 156
IF (network configuration)

statement 33
LU (VTAMAPPL) statement 76
TP statement 65

DELAY statement 139, 290, 400, 401
delay, intermessage

defined 288
factors determining length

listed 288
load on WSim system 291
network definition statements 289
STL statements 290

receiving messages during 291
delaying execution 139
delays, canceling 296
DELETE function (DATASAVE

statement) 132
delete key statement 140
delete key, simulating 140
DELETE statement 140, 401
DELSTR function 466
DELWORD function 131, 466
DELYSEED operand (NTWRK

statement) 43
designing STL programs

documenting the STL program
comment block at beginning 230
comments in programs 231
test plans, retaining 231

planning
message content, determining 230
procedures, structuring 229
programs, structuring 229
steps for program

development 229
special requirements

message generation statements,
including 229

products, programs, and
resources 228

running the test 228
testing STL programs

logic testing 231
syntax testing 231

DESTNAME operand
SIDEENT statement 53
SIDEINFO operand (APPCLU

statement) 63
DEV statement 89
device counters 213
device definition statement 89, 100
device ID functions

described 274
listed 309

device key statements
for various devices 501
listed 269
types of 268
using 268

device keys, simulating
editing keys 269
keys available for various

devices 501
keys for moving around on

screen 269, 270
screen attribute keys 269

devices, simulating, magnetic stripe
reader 272

DEVID data field option 201
DEVID function 467
display color select statement 124
display highlight select statement 149
DISPLAY operand

DEV (TCP/IP) statement 93
LOG statement 168
LU (VTAMAPPL) statement 77

displaying the simulated 3270 display
image 168

DIST statement 23
DLOGMOD operand (LU (VTAMAPPL)

statement) 77
DLYCNCL operand 37
DO FOREVER statement 260, 403
DO statement, iterative 260, 404
DO statement, simple 258, 402
DO statements 258, 402, 405
DO WHILE statement 259, 403
documenting STL programs

comment block at beginning 230
comments in programs 231
test plans, retaining 231

DOWN operand
CURSOR statement 126
SCROLL statement 181

DR1 operand 179
DR2 operand 179
DSEQ data field option 201
DUP data field option 201
DUP statement 141, 405
duplicate key statement 141
duplicate key, simulating 141

E
E2D function 468, 469
EB operand 179
EBCDIC string

using to represent a random
number 273

EL data field option 201
ELSE operand

IF (message generation)
statement 156

IF (network configuration)
statement 33

EMTRATE network definition operand,
using to control intermessage
delay 289

EMTRATE operand (NTWRK
statement) 43

ENCR operand (LU (VTAMAPPL)
statement) 77

end message generation deck
statement 141

ENDTXT statement 141, 405
ENDUTBL statement 405

Index 533

ENTER AID key 285
Enter key statement 142
Enter key, simulating 142
ENTER statement 142
entries in user table, selecting 275
Erase Input key statement 142
Erase Input key, simulating 142
Erase to the End of Field key

statement 142
Erase to the End of Field key,

simulating 142
EREOF statement 142, 406
ERIN statement 142, 406
error simulation statement 143
ERROR statement 143
error, logical simulating 176
error, simulating 143
errors, correcting

error messages, reading 337
event dictionary, using 340
logic 341
proper method for 341
syntax 337
variable dictionary, using 338

event dictionary
example 340
reading 340
using to find errors 340

EVENT operand
FE statement 24
IF (message generation)

statement 151
IF (network configuration)

statement 28
ON statement 172
WAIT statement 194

EVENT statement 143, 145
events

canceling 305
names 301, 303
posting 300
signaling 303
TAG 301, 303

EVENTTAG operand
CANCEL Statement 109
EVENT statement 145

EXC operand 179
execute procedure

defined 295
functions not allowed in 295
statements not allowed in 295

EXECUTE statement 294, 296, 406
execution parameters, STL Translator

NOPDSOUT 320
NOSEQOUT 320
NOSOURCE 319
NOWSIM 319
PROGRAM=name 320
PRTLNCNT=nnn 321
using 319

EXIT operand (NTWRK statement) 44
EXIT statement 145
exiting from message generation

processing 145
expressions

bit, defined 249

expressions (continued)
integer

constant, defined 248
defined 248
operators for 248

string
defined 248
operators for 248

expressions not allowed in asynchronous
conditions 503

EXTFUN operand
DEV (TCP/IP) statement 93
LU (VTAMAPPL) statement 78

F
facilitating program development 231
FE statement 24
Field Advance key, simulating 146
Field Backspace key, simulating 147
Field Exit key, simulating 147
Field Mark key, simulating 148
Field Minus (F–) key statement 147
Field Minus (F–) key, simulating 147
Field Plus (F+) key, simulating 147
FILE statement 25
finding strings 251, 471
FLDADV statement 146, 407
FLDBKSP statement 147, 407
FLDMINUS statement 147, 408
FLDOUTLN operand

DEV (TCP/IP) statement 93
LU (VTAMAPPL) statement 78

FLDPLUS statement 147, 408
FLDVALID operand

DEV (TCP/IP) statement 93
LU (VTAMAPPL) statement 78

FM data field option 201
FM function 469
FM statement 148, 270, 408
FMI operand 179
format control statements 215
FRSTTXT network definition operand,

defining programs used 329
FRSTTXT operand

DEV (TCP/IP) statement 94
LU (VTAMAPPL) statement 79
TP statement 66

FTPPORT operand (TCPIP
statement) 101

FUNCTION operand (DATASAVE
statement) 130

functions, defined 234, 249
FUNCTS operand (DEV (TCP/IP)

statement) 94
future event statement 24

G
general definition statements, list of 103
generate message generation deck

statement 190, 193

H
HEAD operand (NTWRK statement) 44
HELP AID key 285
HELP key, simulating 148
HELP statement 148
HEX function 469
hexadecimal data, representing 241
HIGH operand (RN statement) 52
highlighting option key, simulating 149
HIGHLITE operand

DEV (TCP/IP) statement 94
LU (VTAMAPPL) statement 79

HIGHLITE statement 149, 409
HOME key, simulating 149
HOME statement 149, 409

I
ID data field option 201
ID function 470
identifying network resources in use

list of functions for 309
IF (message generation) statement 150,

164
IF (network configuration) statement 27,

40
IF number 357
IF statement 256, 410
IF statement, logic test 209
IF statements, network-level 297
IFS operand (DEACT statement) 138
INCLUDE network definition statement,

defining programs used 329
INCLUDE statement 40
including data from other data sets 252
including network definitions in

STL 325
example 325

INDEX function 251, 471
INEXIT operand (NTWRK statement) 44
INFOEXIT operand (NTWRK

statement) 44
INHBTMSG operand (NTWRK

statement) 45
INIT operand (LU (VTAMAPPL)

statement) 79
INITSELF statement 279, 410
input to STL Translator

defined 314
INSERT function 471
INSERT function (DATASAVE

statement) 132
INSERT operand (DATASAVE

statement) 133
INSERT statement 164, 412
INSTANCE operand (TP statement) 66
integer

condition, defined 263
constant, defined 239
expression, defined 248
operators 248
variable, defined 238

INTEGER statement 412
intermessage delay

defined 288

534 WSim Script Guide and Reference

intermessage delay (continued)
factors determining length

listed 288
load on WSim system 291
network definition statements 289
STL statements 290

receiving messages during 291
INXEXPND operand (NTWRK

statement) 45
ITERATE statement 261, 413
iterative DO statement 260, 404
ITIME operand (NTWRK statement) 45
IUTI network definition operand, using

to control intermessage delay 289
IUTI operand

DEV (TCP/IP) statement 94
LU (VTAMAPPL) statement 79
TP statement 66

J
JCL

using to run STL Translator 321
jump key statement 165
JUMP key, simulating 165
JUMP PARTITION key, simulating 165
JUMP statement 165, 413

K
keyboard actions, simulating

cursor movement 270
device keys 268
text entry 267

keys that can be simulated for various
devices 501

keyword statements, use of 234, 247

L
L data field option 201
LABEL operand

BRANCH statement 106
CALL statement 109

LABEL statement 165
label, putting in message generation

deck 165
labels

defined 235
naming conventions for 235
syntax for 235

LASTPOS 185
function 472

LASTVERB data field option 201
LASTVERB function 473
LCLEAR statement 166, 414
LEAVE statement 261, 414
LEFT function 473
LEFT function (DATASAVE

statement) 132
LEFT operand (CURSOR statement) 126
LENG operand

CALC statement 108
DATASAVE statement 134
IF (message generation)

statement 157

LENG operand (continued)
IF (network configuration)

statement 33
LOG statement 168
TEXT statement 191

LENGTH function 474
LIGHTPEN statement 270, 415
line counters 213
LL data field option 201
load on WSim system, affecting

intermessage delay 291
LOC operand

CALC statement 107
DATASAVE statement 134
IF (message generation)

statement 152
IF (network configuration)

statement 29
local clear statement 166
local clear, simulating 166
LOCLENG operand

IF (message generation)
statement 157

IF (network configuration)
statement 33

LOCLPORT operand (DEV (TCP/IP)
statement) 95

LOCTEXT operand
IF (message generation)

statement 154
IF (network configuration)

statement 30
log byte

with CPI-C statements 369, 394
with INITSELF 281, 410
with TERMSELF 281, 441
with TRANSMIT 285, 442

log data set, writing data to 166
LOG operand

CMND statement 114
CMxxxx statement 119
IF (message generation)

statement 157
IF (network configuration)

statement 34
TEXT statement 192

LOG statement 166, 168, 308, 415
LOGDSPLY operand

DEV (TCP/IP) statement 95
LU (VTAMAPPL) statement 79

logging off an application
SNA LUs 281
Telnet 3270 282

logging on an application
determining logon code 278
placing logon code 278
SNA LUs 278
Telnet 3270 282

logging test data
LOG statement 308
methods of 308

logic test locations 209
logic test, conditions not evaluated 217
logic tests, deactivating 138
Loglist Utility

sample output 343
sample output, explanation of 347

Loglist Utility (continued)
tracing simulation activity 341
using with STL programs 341

LOW operand (RN statement) 52
LSEQ data field option 202
LU (VTAMAPPL) statement 71, 73, 85
LUID data field option 202
LUID function 475
LUNAME operand

CNOS operand (APPCLU
statement) 61

SIDEENT statement 53
SIDEINFO operand (APPCLU

statement) 63
LUTYPE operand (LU (VTAMAPPL)

statement) 80

M
magnetic stripe reader data,

defining 189
magnetic stripe reader input

statement 189
MAXCALL operand

DEV (TCP/IP) statement 95
LU (VTAMAPPL) statement 80
TP statement 66

MAXNOPTN operand
DEV (TCP/IP) statement 95
LU (VTAMAPPL) statement 80

MAXPTNSZ operand
DEV (TCP/IP) statement 95
LU (VTAMAPPL) statement 80

MAXSESS operand (LU (VTAMAPPL)
statement) 80

message data, generating 190
message generation

conditions for continuing 288
entering 287
exiting 286
interrupting 286

message generation deck
3270 simulation statements, list

of 104
5250 simulation statements, list

of 105
defining start of 168
ending 141
establishing label in 165
general definition statements, list

of 103
generating 190
logic testing 150
process, stopping 188
returning from subroutine 177
SNA simulation statements, list

of 104, 105
specifying 40
specifying running sequence 50
stopping generation of 176

message generation deck logic test
statement 150, 164

message generation deck start
statement 168, 170

message generation sequence
statement 50, 51

Index 535

message generation statements in STL
programs 251

message text definition
statement 40

messages, receiving
during intermessage delay 291
updating terminal’s display

buffer 291
messages, transmitting

statements used to transmit messages,
listed 287

using AID keys 285
using TRANSMIT statement 285

MINLEN operand (FILE statement) 27
MLEN operand

APPCLU statement 62
TCPIP statement 101
VTAMAPPL statement 86

MLOG operand
APPCLU statement 62
TCPIP statement 101
VTAMAPPL statement 86

MODE operand (CMND statement) 115
MODENAME operand

CNOS operand (APPCLU
statement) 62

SIDEENT statement 54
SIDEINFO operand (APPCLU

statement) 63
MODULE operand (EXIT statement) 145
MONITOR statement 168, 307, 416
monitoring the test

methods of 307
MONITOR statement 307
SAY statement 307
using operator interface between

WSim and the NetView
program 307

using WSim Display Monitor
Facility 307

MONTH data field option 202
MONTH function 475
MORE operand (TEXT statement) 193
MSGDD partitioned data set members

defined 317
MSGDISK statement 40
MSGTRACE operand

DEV (TCP/IP) statement 96
LU (VTAMAPPL) statement 81
TP statement 67

MSGTXT statement 168, 170, 416
MSGTXT statement, name

defined 235
naming conventions for 235

MSGTXTID data field option 202
MSGTXTID function 475
MSGUTBL statement 170, 245, 417
MSGUTBL statement, name

defined 235
naming conventions for 235

multiple TYPE statements
concatenating 268
using 267

N
Name field, coding conventions 3

NAME operand
BRANCH statement 106
CALL statement 109

NAMEHASH operand (NTWRK
statement) 46

names, MSGTXT and MSGUTBL
statements

defined 235
naming conventions for 235

naming conventions
events 301, 303
labels 235
MSGTXT and MSGUTBL names 235

NCP operand (NTWRKLOG
statement) 50

NCTLEXIT operand (NTWRK
statement) 46

NETEXIT operand (NTWRK
statement) 46

NETID data field option (PU21
statement) 202

NETID function 476
NETUSER operand (NTWRK

statement) 46
network

defining 42, 224
network definition

controlling intermessage delays
with 289

including in STL input 325
specifying separate log data set

for 49, 329
network definition statement 42, 49
network definition statements

operands for controlling intermessage
delays

coding 289
DELAY operand 289
EMTRATE operand 289
IUTI operand 289
listed 289
THKTIME operand 289
UTI operand 289

specifying programs used, operands
and statements for

ATRDECK operand 329
FRSTTXT operand 329
PATH operand 329
PATH statement 329

network level logic test statement 27, 40
network-level IF statements 297
new line key statement 171
new line key, simulating 171
NL data field option 202
NL function 476
NL statement 171, 270, 418
NOIMPLICIT 320
NOP statement 257, 418
NOPDSOUT

defined 320
NORESP statement 296, 297, 418
NOSEQOUT

defined 320
NOSOURCE

defined 319
NOWSIM

defined 319

NSEQ data field option 202
NSW operand

IF (message generation)
statement 187

IF (network configuration)
statement 213

SETSW statement 187
NTWRK statement 42, 49
NTWRKLOG statement 49
NUMCOLS function 277, 477
NUMREC operand (FILE statement) 25
NUMROWS function 277, 477

O
OFFSET operand

CURSOR statement 126
SELECT statement 181

ON SIGNALED statement 304, 419
ON statement 171
ONEVENTS operand (DEACT

statement) 138
ONIN statement

deactivating 293
reference 292, 420
testing 292
using 292

ONOUT statement
deactivating 293
reference 292, 420
testing 292
using 292

OPCMND statement 173, 309, 421
operator command statement 173
operator control command,

specifying 173
operator decisions, simulating 274
operator interface with the NetView

program 307
operators

integer 248
relational 262
string 240, 248

OPTIONS operand (NTWRK
statement) 46

OUTEXIT operand (NTWRK
statement) 47

output created by STL Translator
listed 314
MSGDD partitioned data set

members 317
printed listing 314
sequential output data set,

defining 318
temporary work data set 319

OVERLAY function 131, 477

P
PA statement 173
PA1-3 AID keys 285
PAD operand (DATASAVE

statement) 135
PAD operand (MSGTXT statement) 169
PARM operand (EXIT statement) 146

536 WSim Script Guide and Reference

PASSWD operand
APPCLU statement 62
VTAMAPPL statement 86

PATH network definition operand,
defining programs used 329

PATH network definition statement,
defining programs used 329

PATH operand
DEV (TCP/IP) statement 96
LU (VTAMAPPL) statement 81
TP statement 67

PATH statement 50, 51
PATHID

data field option 202
function 478

PATHSEED operand (NTWRK
statement) 47

PF statement 174
PF1-24 AID keys 285
PID operand (JUMP statement) 165
planning STL programs

message content, determining 230
procedures, structuring 229
programs, structuring 229
steps for program development 229

PLENG operand (DATASAVE
statement) 135

PORT operand (DEV (TCP/IP)
statement) 96

POS
function 479
operand

DATASAVE statement 135
SET statement 186

position cursor statement 125
POST operand (EVENT statement) 144
POST statement 300, 422
POSTED function 302, 479
posting an event 143

defined 300
determining if an event is posted 302
using POST statement 301

PRINT AID key 285
print key statement 174
print key, simulating 174
PRINT statement 174
printed listing

contents of by column 315
defined 314

procedure
defined 233, 326

procedures from different STL programs,
combining

declaring variables for 333
example of 334
numbering IF statements for 334
reasons for 333

program access key statement 173
program access key, simulating 173
program development, facilitating 231
program function key statement 174
Program Function key statement 111
Program Function keys, simulating 111,

174
PROGRAM=name

defined 320

PROTMSG operand
DEV (TCP/IP) statement 96
LU (VTAMAPPL) statement 81

PRTLNCNT=nnn
defined 321

PRTSPD operand (LU (VTAMAPPL)
statement) 81

PS operand
DEV (TCP/IP) statement 97
LU (VTAMAPPL) statement 81

PSEQACT operand (CMND
statement) 115

PSEQVAL operand (CMND
statement) 116

PULL
data field option 202
function 480

PUSH statement 175, 423

Q
QRI operand 179
QSIGNAL operand (EVENT

statement) 144
QSIGNAL statement 303, 424
qsignaling an event

defined 300
using QSIGNAL statement 303

QUEUE statement 175, 425
QUEUED

function 481
operand 186

QUIESCE operand
DEV (TCP/IP) statement 97
LU (VTAMAPPL) statement 82
TP statement 67

QUIESCE statement 176, 425
QUIESCE UNTIL POSTED

defined 302
example of 302
using with ONIN and ONOUT 302

QUIESCE UNTIL SIGNALED
defined 304

QUIESCE UNTIL statement
defined 290
used to define asynchronous

condition 292
using 298, 425

R
RANDOM function 273, 481
random numbers 52

as part of message text 273
functions for generating 273
represented by EBCDIC string 273

RATE statement 51
rate table statement 51
RECALL data field option 203
receiving messages

during intermessage delay 291
updating terminal’s display

buffer 291
RECFM operand (FILE statement) 26
RECLEN operand (FILE statement) 27
relational operators 261, 262

REPEAT function 268, 482
REPORT operand (NTWRK

statement) 47
request/response header statement 178,

180
reserved variables

in asynchronous conditions 239
use of 239

reserved words
defined 235
listed 507

RESET (reset event) statement 301, 426
RESET (reset key) statement 427
reset key, simulating 176
RESET operand (EVENT statement) 144
RESET statement 176
resetting an event 143
RESOURCE operand

CMND statement 116
LU (VTAMAPPL) statement 82

resources, WSim, allocating 246, 334
RESP operand

CMND statement 117
IF (message generation)

statement 157
IF (network configuration)

statement 34
RH statement 179
TEXT statement 193

RESP statement 176
restrictions on SUBSTR function in

asynchronous conditions 299
return codes, STL Translator 324
return from subroutine statement 177
RETURN statement 177, 256, 428, 429
REVERSE function 131, 483
RH 239
RH statement 178, 180
RH, building 178
RH, modifying 283, 430
RIGHT function 483
RIGHT function (DATASAVE

statement) 132
RIGHT operand (CURSOR

statement) 126
RN statement 52
RNUM data field option 204
RNUM function 273, 484
ROLLDOWN AID key 285
rolldown key statement 180
rolldown key, simulating 180
ROLLDOWN statement 180
ROLLUP AID key 285
rollup key statement 180
rollup key, simulating 180
ROLLUP statement 180
ROW operand

CURSOR statement 126
SELECT statement 182

ROWCOL function 485
RSTATS operand

DEV (TCP/IP) statement 97
LU (VTAMAPPL) statement 82

RTR operand (LU (VTAMAPPL)
statement) 83

RU 239

Index 537

S
save areas 238
save data statement 128, 138
SAVEAREA operand

DEV (TCP/IP) statement 98
LU (VTAMAPPL) statement 83

saving data 128
SAY statement 307, 428
SB2DBCS function 485
SB2DBCS function (DATASAVE

statement) 133
SB2MDBCS function 486
SB2MDBCS function (DATASAVE

statement) 133
SCAN operand

IF (message generation)
statement 158

IF (network configuration)
statement 34

NTWRK statement 48
SCANCTR operand

IF (message generation)
statement 158

IF (network configuration)
statement 35

SCREEN 239
scroll key statement 180
scroll key, simulating 180
SCROLL statement 180, 429
SELECT statement 181, 257, 429
selector pen detect statement 181
selector pen, simulating 181
SEND AID key 285
SENDLINE AID key 285
SENDMSG AID key 285
SENSE operand

CMND statement 117
RESP statement 177

SEQ data field option 204
SEQ operand

DEV (TCP/IP) statement 98
LU (VTAMAPPL) statement 83
TP statement 67

SEQ operand (NTWRK statement) 48
SERVADDR operand (DEV (TCP/IP)

statement) 98
SESSIONS operand (CNOS operand

(APPCLU statement)) 62
SESSNO data field option 205
SESSNO function 486
set counters statement 182
SET statement 182
set switches statement 187
set UTI statement 188
SETRH statement 283, 430
SETSW statement 187
SETTH statement 283, 432
setting counters 182
setting switches 27
setting up a future action 171
setting up asynchronous conditions 299
SETUTI statement 188
shared variables 238
SIDEEND statement 53
SIDEENT statement 53
SIDEINFO operand (APPCLU

statement) 62

SIDEINFO statement 54
SIGNAL operand (EVENT

statement) 145
SIGNAL statement 303, 433
signaling an event

defined 300
using SIGNAL statement 303

signalling action on an event 143
simple DO statement 258, 402
simulation statements, list of 104, 105
SNA

command, building 112
logical error, simulating 176
request/response header,

modifying 178
simulation statements, list of 104
transmission header, modifying 193

SNA command statement 112, 118
SNA LUs

initiating (ILU) 278
logging off 281
logging on 278
primary 279
secondary 279

SNA response statement 176
SNACMND statement 434
SNASCOPE operand

IF (message generation)
statement 159

IF (network configuration)
statement 35

SNF operand (TH statement) 193
SNI operand 179
SON operand (CMND statement) 117
SPACE

function 487
operand (MSGDISK statement) 41

special requirements
message generation statements,

including 229
products, programs, and

resources 228
running the test 228

specifying message generation decks 40
specifying rate table member 51
SSEQACT operand (CMND

statement) 117
SSEQVAL operand (CMND

statement) 118
statement correlation records, creating

using the @PROGRAM
statement 342

using the PROGRAM execution
parameter 342

statements
3270 simulation, list of 104
5250 simulation, list of 105
adjacent node definition 233
APPCLU 60
BRANCH 106
BTAB 106
CALC 107
CALL 108
CALL REQUEST data definition 234
CALLDATA 234
CANCEL 109
CDRM 234

statements (continued)
CHANL 234, 247
CHARSET 109
class of service table entry 233, 234
CLEAR 110
CLEARPTN 111
CMACCP 118
CMALLC 120
CMCFM 120
CMCFMD 120
CMD 111
CMDEAL 120
CMECS 120
CMECT 120
CMEMN 120
CMEPLN 120
CMESL 120
CMFLUS 120
CMINIT 120
CMND 112
CMPTR 120
CMRCV 120
CMSCT 121
CMSDT 121
CMSED 121
CMSEND 121
CMSERR 121
CMSF 120
CMSFM5 120
CMSLD 121
CMSMN 121
CMSPLN 121
CMSPTR 121
CMSRC 121
CMSRT 121
CMSSL 121
CMSST 121
CMSTPN 121
CMTRTS 121
CNTLR 234, 249
COLOR 124
COS 251
COSEND 234
CTAB 125
CURSOR 125
CURSRSEL 127
DATASAVE 128
DEACT 138
DELAY 139
DELETE 140
DIST 23
DUP 141
ENDTXT 141
ENTER 142
EREOF 142
ERIN 142
ERROR 143
EVENT 143
EXIT 145
FE 24
FILE 25
FLDADV 146
FLDBKSP 147
FLDMINUS 147
FLDPLUS 147
FM 148
format control 215

538 WSim Script Guide and Reference

statements (continued)
general definition, list of 103
HELP 148
HIGHLITE 149
HOME 149
IF (message generation) 150
IF (network configuration) 27
INCLUDE 40
INSERT 164
JUMP 165
LABEL 165
LCLEAR 166
LOG 166
LU (VTAMAPPL) 73
MONITOR 168
MSGDISK 40
MSGTXT 168
MSGUTBL 170
network log data set 49
NL 171
NTWRK 42
NTWRKLOG 49
ON 171
OPCMND 173
operands for, summary of 17, 233
PA 173
PATH 50
PATH distribution 23
PF 174
PRINT 174
PUSH 175, 423
QUEUE 175, 425
QUIESCE 176
RATE 51
RESET 176
RESP 176
RETURN 177
RH 178
RN 52
ROLLDOWN 180
ROLLUP 180
SAY 428
SCROLL 180
SELECT 181
SET 182
SETSW 187
SETUTI 188
SIDEEND 53
SIDEENT 53
SIDEINFO 54
SNA simulation, list of 104, 105
STOP 188
STRIPE 189
SYSREQ 190
TAB 190
TCPIP 100
TEXT 190, 193
TH 193
TP 64
UDIST 54
UTBL 55
UTI 56
VTAMAPPL 85
WAIT 194
WTO 196
WTOABRHD 197

statements for controlling intermessage
delays 290

statements, continuation of 234
STATUS operand

ERROR statement 143
IF (message generation)

statement 159
STCPHCLR operand (DEV (TCP/IP)

statement) 98
STCPHCLX operand (DEV (TCP/IP)

statement) 98
STCPPORT operand (TCPIP

statement) 102
STCPROLE operand (DEV (TCP/IP)

statement) 99
STIME operand (NTWRK statement) 48
STL named constant declarations

CPI-C verb parameters 511
STL program

defined 221, 326
elements of 233
examples of 225
referencing in network definition 329
related to network definitions 222

STL programs, defining order of use
ATRDECK operand 329
FRSTTXT operand 329
PATH operand 329
PATH statements 329

STL reserved words
defined 235
listed 507

STL statements for controlling
intermessage delays 290

STL trace output, Loglist Utility
reading 343
sample output, explanation of 343

STL trace records
logging 342
printing 343
statement correlation records,

obtaining 341
STL Translator execution parameters

NOPDSOUT 320
NOSEQOUT 320
NOSOURCE 319
NOWSIM 319
PROGRAM=name 320
PRTLNCNT=nnn 321
using 319

STL Translator return codes 324
STL variable declarations

CPI-C verb parameters 511
STL Variable Declarations for CPI-C Verb

Parameters 511
STLMEM operand (MSGTXT

statement) 170
STLTRACE network definition

operand 342
STLTRACE operand

DEV (TCP/IP) statement 99
LU (VTAMAPPL) statement 83
TP statement 67

STOP statement 188
string

condition, defined 263
constant, defined 240

string (continued)
expression, defined 248
operators 248
variable, defined 238

STRING statement 437
STRIP function 131, 487
STRIPE statement 189, 272, 438
STRIPL function 131
STRIPT function 131
structured flow-of-control statements

CALL statement
asynchronous subset

statement 294
structured flow-of-control

statement 255
DO FOREVER statement groups 260
DO statement group execution,

control of 261
DO statement groups, types of 258
DO WHILE statement groups 259
IF/THEN/ELSE statement

groups 256
iterative DO statement groups 260
SELECT statement groups 257
simple DO statement groups 258
use of 255

Structured Translator Language
described 221
using message generation decks

with 222
when to use 222

structuring STL input
avoiding procedure call misuse 327
coding multiple programs 326
naming programs, procedures, and

user tables 328
organizing STL programs 326

structuring STL programs
calling procedures in separate source

data sets 327
containing multiple procedures 332
related to PATH statement

entries 332, 333
using separate source data sets 330

SUBSTR function
in asynchronous conditions 299, 300,

488, 490
use of 250, 488, 490

SUBWORD function 132, 489
SUDPPORT operand (TCPIP

statement) 102
SUSPEND statement 290, 438, 440
SW operand

IF (message generation)
statement 187

IF (network configuration)
statement 213

SETSW statement 187
switches 238
switches, setting 187
syntax rules for STL 234
SYSREQ AID key 285
SYSREQ key, simulating 190
SYSREQ statement 190, 440
system request statement 190

Index 539

T
TAB data field option 205
TAB function 490
tab key statement 190
tab key, simulating 190
TAB statement 190, 270, 440
tab statement, conditional 125
TABLEI operand (DATASAVE

statement) 136
TABLEO operand (DATASAVE

statement) 136
TAG, event 301, 303
TCPIP statement 100, 103
TCPIPID data field option 205
TCPIPID function 490
TCPNAME operand (TCPIP

statement) 102
Telnet 3270

logging off 282
logging on 282

temporary work data set
defined 319

terminal counters 213
terminal simulations, list of 211, 213
TERMSELF statement 281, 441
test plan for simulation,

understanding 227
test under mask comparison 264
testing for event completion, IF (network

configuration) statement 27
testing STL programs

logic testing 231, 341
syntax testing 231, 337

TESTREQ key, simulating 190
TEXT operand

DATASAVE statement 137
IF (message generation)

statement 159
IF (network configuration)

statement 35
text operands, continuation of 5
TEXT statement 190, 193
TEXT2 operand 137
TEXTSEED operand (NTWRK

statement) 48
TH 239
TH statement 193
TH, modifying 283, 432
THEN operand

IF (message generation)
statement 160

IF (network configuration)
statement 36

ON statement 172
THKTIME network definition operand,

using to control intermessage
delay 289

THKTIME operand
DEV (TCP/IP) statement 99
LU (VTAMAPPL) statement 83

THROTTLE operand (LU (VTAMAPPL)
statement) 84

TIME operand
DELAY statement 139
EVENT statement 145
FE statement 25
WAIT statement 195

TNPORT operand (TCPIP
statement) 102

TOD data field option 205
TOD function 273, 491
TP 393
TP statement 64
TPID data field option 205
TPID function 491
TPINSTNO data field option 205
TPINSTNO function 492
TPNAME operand

SIDEENT statement 54
SIDEINFO operand (APPCLU

statement) 63
TP statement 67

TPREPEAT operand (TP statement) 68
TPSTATS operand (TP statement) 68
TPSTIME operand (TP statement) 69
TPTYPE operand (TP statement) 69
tracing a sample STL program

Loglist Utility output, explanation
of 347

sample network definition used 346
sample printed listing obtained 347
sample STL program used 346

TRANSLATE function 492
TRANSLATE function (DATASAVE

statement) 133
transmission header statement 193
Transmit Interrupt

conditions for continuing after 288
defined 287
statements causing 287

TRANSMIT statement 285, 286, 442
transmitting messages

statements used to transmit messages,
listed 287

using AID keys 285
using TRANSMIT statement 285

TSEQ data field option 205
TSW operand

IF (message generation)
statement 187

IF (network configuration)
statement 213

SETSW statement 187
TXTDLM operand (MSGTXT

statement) 170
TYPE operand

DEV (TCP/IP) statement 99
FILE statement 26
IF (message generation)

statement 163
IF (network configuration)

statement 39
RH statement 178

TYPE statement 267, 273, 443
types

constant 239
variable 238

typographic conventions xv

U
UASIZE operand

DEV (TCP/IP) statement 100
LU (VTAMAPPL) statement 84

UCD operand (TP statement) 69
UCMDEXIT operand (NTWRK

statement) 49
UDIST network definition statement 275
UDIST statement 54
unshared variables 238
UOM operand

DEV (TCP/IP) statement 100
LU (VTAMAPPL) statement 84

UP operand
CURSOR statement 127
SCROLL statement 181

user data table (member) statement 170
user data table statement 55
user data table, building 55
user exit statement 145
user exits 253, 444
user tables

comparing entries using UTBLSCAN
function 276

declaring 244
defining 275
described 275
selecting entries in

with UTBL function 275
with UTBLMAX function 276

User Time Interval statement 56
USERAREA operand

DEV (TCP/IP) statement 100
LU (VTAMAPPL) statement 84
TP statement 70

USEREXIT statement 253, 444
using CPI-C verbs 253
UTBL data field option 205
UTBL distribution statement 54
UTBL function 275, 276, 492, 493, 494
UTBL operand

IF (message generation)
statement 163

IF (network configuration)
statement 39

UTBL statement 55
UTBLCNTR operand

IF (message generation)
statement 164

IF (network configuration)
statement 39

UTBLMAX function 276, 494
UTBLMAX operand (SET statement) 186
UTBLSCAN function 276, 495, 496
UTBLSEED operand (NTWRK

statement) 49
UTI network definition operand, using to

control intermessage delay 289
UTI operand

DELAY statement 140
NTWRK statement 49
SETUTI statement 188
WAIT statement 196

UTI statement 56, 445
UTI, setting 188
UXOCEXIT operand (NTWRK

statement) 49

V
VALUE operand (CALC statement) 108

540 WSim Script Guide and Reference

variable data
coding 199
in TEXT statement 199
list of options 199

variable dictionary
reading 338
using to find errors 338
using with STL trace facility

using @PROGRAM statement 318
using PROGRAM execution

parameter 318
variables

classes
shared, defined 238
unshared, defined 238

reserved
in asynchronous conditions 239
use of 239

types
bit, defined 238
integer, defined 238
string, defined 238

VERIFY
THEN operand, IF (message

generation) statement 162
THEN operand, IF (network

configuration) statement 38
VERIFY statement 308, 445
VTAM

application program password,
defining 85

application program, defining
symbolic name 85

logical unit half-sessions, defining 73
VTAMAPID function 496
VTAMAPPL logical unit definition

statement 71, 73, 85
VTAMAPPL simulation statement 85
VTAMAPPL statement 85, 86
VTAMAPPLID data field option 206

W
wait for response statement 194, 196
WAIT statement 194, 196, 446, 448
WAIT UNTIL POSTED

defined 302
example of 302
using with ONIN and ONOUT 302

WAIT UNTIL SIGNALED
defined 304

WAIT UNTIL statement
defined 290
used to define asynchronous

condition 292
using 298

WHEN operand
IF (message generation)

statement 164
IF (network configuration)

statement 39
WORD function 496
WORDINDEX

function 497
operand 186

WORDPOS
function 497

WORDPOS (continued)
operand 186

WORDS
function 498
operand 186

work variable 339
Workload Simulator (WSim)

defined 3
operating systems supported 3

WORKSET operand (MSGDISK
statement) 42

write data to console statement 196
write data to log statement 166, 168
writing data to operator console 196
writing Verify records 308
WSim Display Monitor Facility,

using 307
WSim message generation statements in

STL programs 251
WSim resources, allocating 246, 334
WTO statement 196, 197, 198
WTOABRHD statement 197

X
X2B function 132, 498
X2C function 132, 499

Y
YEAR data field option 206
YEAR function 499

Index 541

542 WSim Script Guide and Reference

����

Printed in USA

SC31-8946-01

	Contents
	Tables
	Figures
	About this book
	Who should read this book
	How to use this book
	Typographic conventions
	Where to find more information

	Part 1. WSim language statements
	Chapter 1. Introduction
	What is Workload Simulator?
	Coding scripting language statements
	Coding the name field
	Coding the operand field

	Comment statements
	Continuing statements
	Continuing text data

	Coding literal text DBCS data

	Chapter 2. Understanding network hierarchies
	Network definition
	Sequence of network configuration definition statements
	CPI-C simulation
	VTAMAPPL simulation
	TCP/IP client simulation
	Combined network

	Definition of statement groups
	General simulation statements
	APPCLU group
	VTAMAPPL group
	TCPIP group

	Sequence of valid network configuration statements

	Chapter 3. Defining a network configuration
	Summary of operands for configuration statements

	Chapter 4. Defining general simulation statements
	DIST - PATH distribution statement
	FE - future event statement
	FILE - FTP FILE definition statement
	IF - network-level logic test statement
	INCLUDE - message text definition statement
	MSGDISK - control block paging data set definition statement
	NTWRK - network definition statement
	NTWRKLOG - network log data set statement
	PATH - message generation sequence statement
	RATE - rate table statement
	RN - random number statement
	SIDEEND - side information table end statement
	SIDEENT - side information table entry statement
	SIDEINFO - side information table begin statement
	UDIST - UTBL distribution statement
	UTBL - user data table statement
	UTI - user time interval statement

	Chapter 5. Defining CPI-C simulation statements
	Summary of operands
	APPCLU - APPCLU statement
	TP - CPI-C transaction program definition statement

	Chapter 6. Defining VTAMAPPL simulation statements
	Summary of operands
	LU - VTAMAPPL logical unit definition statement
	VTAMAPPL - VTAMAPPL statement

	Chapter 7. Defining TCP/IP client simulation statements
	Summary of operands
	DEV - TCP/IP device definition statement
	TCPIP - TCP/IP connection definition statement

	Chapter 8. Defining the message generation deck
	Message generation statement categories
	General definition statements
	SNA simulation statements
	3270 simulation statements
	5250 simulation statements
	CPI-C simulation statements

	Message generation statement descriptions
	BRANCH - branch statement
	BTAB - back tab key statement
	CALC - calculate statement
	CALL - call subroutine statement
	CANCEL - cancel event statement
	CHARSET - character set select statement
	CLEAR - clear key statement
	CLEARPTN - clear partition key statement
	CMD - program function key statement
	CMND - SNA command statement
	CMxxxx - CPI-C simulation statement group
	COLOR - display color select statement
	CTAB - conditional tab statement
	CURSOR - position cursor statement
	CURSRSEL - cursor select key statement
	DATASAVE - save data statement
	DEACT - deactivate logic test and ON condition statement
	DELAY - delay statement
	DELETE - delete key statement
	DUP - dup key statement
	ENDTXT - end message generation deck statement
	ENTER - enter key statement
	EREOF - erase to end of field key statement
	ERIN - erase input key statement
	ERROR - error simulation statement
	EVENT - event statement
	EXIT - user exit statement
	FLDADV - field advance key statement
	FLDBKSP - field backspace key statement
	FLDMINUS - field minus key (F-) statement
	FLDPLUS - field exit or field plus key (F+) statement
	FM - field mark key statement
	HELP - help key statement
	HIGHLITE - display highlight select statement
	HOME - home key statement
	IF - message generation deck logic test statement
	INSERT - insert statement
	JUMP - jump key statement
	LABEL - label statement
	LCLEAR - local clear statement
	LOG - write data to log statement

	MONITOR - monitor statement
	MSGTXT - message generation deck begin statement
	MSGUTBL - user data table (Member) statement
	NL - new line key statement
	ON - on statement
	OPCMND - operator command statement
	PA - program access key statement
	PF - program function key statement
	PRINT - print key statement
	PUSH - push statement
	QUEUE - queue statement
	QUIESCE - quiesce statement
	RESET - reset key statement
	RESP - SNA response statement
	RETURN - return from subroutine statement
	RH - request/response header statement
	ROLLDOWN - rolldown key statement
	ROLLUP - rollup key statement
	SCROLL - scroll key statement
	SELECT - selector pen detect statement
	SET - set counters statement
	SETSW - set switches statement
	SETUTI - set UTI statement
	STOP - stop statement
	STRIPE - magnetic stripe reader input statement
	SYSREQ - system request statement
	TAB - tab key statement
	TEXT - generate text statement
	TH - transmission header statement
	WAIT - wait for response statement
	WTO - write data to console statement
	WTOABRHD - write data with abbreviated header to console statement

	Chapter 9. Data field options
	Description of data field options
	Example of the length data field options

	Chapter 10. Data locations
	Chapter 11. Terminal, device, and logical unit types
	Chapter 12. Counters and switches
	Chapter 13. Format control statements
	Chapter 14. Conditions logic test not evaluated
	Part 2. Guide to using STL and the STL Translator
	Chapter 15. Introducing the Structured Translator Language
	What is STL?
	What do STL programs contain?
	How do STL programs relate to a script?
	Using STL
	Using message generation statements with STL

	Using the STL Translator
	What does an STL input data set look like?

	Chapter 16. Designing STL programs
	Understanding the test plan for the simulated network
	Identifying special requirements
	Using products, programs, and specific resources
	Deciding how to run the test
	Including message generation statements in STL programs

	Planning your programs
	Structuring programs and procedures
	Determining message content

	Documenting your STL programs
	Testing your STL programs
	Facilitating STL program development

	Chapter 17. Understanding the elements of an STL program
	What are the basic elements of an STL program?
	What does an STL statement include?
	Using STL syntax
	Using variables and constants
	Variable types
	Variable classes
	Reserved variables
	Constant types
	Named constants

	Using declarative statements
	Declaring variable types and classes
	Declaring named constants
	Declaring user tables
	Allocating WSim resources

	Using assignment statements
	Using keyword statements
	Using expressions
	Integer expressions
	String expressions
	Bit expressions

	Using functions
	The SUBSTR function
	The INDEX function

	Including message generation statements in STL programs
	Including data from other data sets
	Defining user exits
	Using CPI-C verbs

	Chapter 18. Controlling STL program flow
	Using structured flow-of-control statements
	The CALL statement
	The IF/THEN/ELSE statement group
	The SELECT statement group
	The DO statement groups
	Simple DO statement group
	The DO WHILE statement group
	The DO FOREVER statement group
	Iterative DO statement
	Controlling DO statement group execution

	Using conditions and relational operators
	Simple conditions
	Simple bit conditions
	Simple integer conditions
	Simple string conditions
	Test under mask operation

	Complex conditions

	Chapter 19. Generating messages for an STL program
	Simulating keyboard actions
	Simulating keyboard text entry
	Simulating device keys
	Keys to Change Screen Attributes
	Keys to Edit Data
	Keys to Move the Cursor Around on the Screen
	Keys for Other Purposes

	Simulating cursor movement
	Simulating the SNA attention key

	Simulating DBCS terminals
	Logic testing DBCS data

	Simulating other types of text entry
	Obtaining data
	Using random numbers
	Obtaining the date and time
	Using device IDs

	Simulating operator decisions
	Using user tables
	Defining user tables
	Selecting entries in a user table
	Comparing entries

	Identifying cursor position and display characteristics
	Logging on and off an application
	Logging on SNA LUs
	Logging off SNA LUs
	Logging on a TCP/IP Telnet 3270 terminal
	Logging off a TCP/IP Telnet 3270 terminal

	Generating SNA terminal messages
	Using the SETTH statement
	Using the SETRH statement
	Using the SNACMND statement

	Chapter 20. Transmitting and receiving messages from an STL program
	Transmitting messages
	Using the TRANSMIT statement
	Interrupting program execution

	Controlling intermessage delays
	Using the network definition to control delays
	Using STL statements to control delays
	Evaluating the load on the WSim system

	Receiving messages
	Testing asynchronous conditions
	Using the ONIN and ONOUT statements
	Testing ONIN and ONOUT conditions
	Deactivating ONIN and ONOUT conditions
	Using asynchronous subset statements
	Using network-level IF statements

	Using the WAIT UNTIL and QUIESCE UNTIL statements
	Setting up asynchronous conditions
	Restrictions on expressions in asynchronous conditions
	Restrictions on the SUBSTR function in asynchronous conditions

	Posting and signaling events
	Posting events
	Posting the event
	Determining if an event is posted

	Using signals
	Signaling an event
	Waiting or quiescing until an event is signaled
	Taking action on a signal asynchronously

	Canceling events
	Specifying variable event names with a time delay

	Chapter 21. Monitoring and automating your test
	Monitoring the test
	Logging test data
	Writing verify records
	Automating your test
	Identifying network resources

	Chapter 22. Using the STL Translator
	Methods for storing scripts
	Input to the STL Translator
	Output created by the STL Translator
	Printed listing
	MSGDD partitioned data set members
	INITDD partitioned data set members
	Sequential output data set
	Temporary work data sets

	Running the STL Translator
	Using STL Translator execution parameters
	Using JCL to run the STL Translator
	Using a TSO CLIST to run the STL Translator
	Using the WSim/ISPF Interface
	Data set requirements
	STL Translator return codes

	Chapter 23. Combining STL programs and network definitions
	Including network definition statements in STL
	Structuring STL programs
	Organizing your STL programs
	Coding multiple programs in one STL input data set
	Avoiding misuse of procedure calls
	Naming programs, procedures, and user tables

	Referencing STL programs in your network definition
	Combining STL procedures from different STL programs

	Chapter 24. Debugging your STL programs
	Finding and correcting STL Translator syntax errors
	Reading error messages
	Using the variable dictionary to find errors
	Reading the variable dictionary
	Using the event dictionary to find errors
	Reading the event dictionary
	Correcting errors

	Obtaining STL trace records
	Creating statement correlation records
	Logging STL trace records
	Printing STL trace records

	Reading STL trace output
	Tracing a sample STL program
	The sample STL program and network definition
	The sample printed listing
	The Loglist Utility output
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:
	Step 7:

	Part 3. Reference to STL statements and functions
	Chapter 25. Reference to STL statements
	@EJECT
	@GENERATE
	@IFNUM
	@INCLUDE
	@NETWORK
	@PROGRAM
	ABORT
	ALLOCATE
	BIT
	BTAB
	CALL
	CANCEL
	CHARSET
	CMACCP — Accept_Conversation
	CMALLC — Allocate
	CMCFM — Confirm
	CMCFMD — Confirmed
	CMDEAL — Deallocate
	CMECS — Extract_Conversation_State
	CMECT — Extract_Conversation_Type
	CMEMN — Extract_Mode_Name
	CMEPLN — Extract_Partner_LU_Name
	CMESL — Extract_Sync_Level
	CMFLUS — Flush
	CMINIT — Initialize_Conversation
	CMPTR — Prepare_To_Receive
	CMRCV — Receive
	CMRTS — Request_To_Send
	CMSCT — Set_Conversation_Type
	CMSDT — Set_Deallocate_Type
	CMSED — Set_Error_Direction
	CMSEND — Send_Data
	CMSERR — Send_Error
	CMSF — Set_Fill
	CMSFM5 — Set_FM_Header_5_Extension
	CMSLD — Set_Log_Data
	CMSMN — Set_Mode_Name
	CMSPLN — Set_Partner_LU_Name
	CMSPTR — Set_Prepare_To_Receive_Type
	CMSRC — Set_Return_Control
	CMSRT — Set_Receive_Type
	CMSSL — Set_Sync_Level
	CMSST — Set_Send_Type
	CMSTPN — Set_TP_Name
	CMTRTS — Test_Request_To_Send_Received
	COLOR
	CONSTANT
	CTAB
	CURSOR
	CURSRSEL
	DEACT
	DELAY
	DELETE
	DO statements
	Simple DO groups
	DO WHILE loops
	DO FOREVER loops
	Iterative DO loops
	DUP
	ENDTXT
	ENDUTBL
	EREOF
	ERIN
	EXECUTE
	FLDADV
	FLDBKSP
	FLDMINUS
	FLDPLUS
	FM
	HIGHLITE
	HOME
	IF
	INITSELF
	INSERT
	INTEGER
	ITERATE
	JUMP
	LCLEAR
	LEAVE
	LIGHTPEN
	LOG
	MONITOR
	MSGTXT
	MSGUTBL
	NL
	NOP
	NORESP
	ON SIGNALED
	ONIN and ONOUT
	OPCMND
	POST
	PUSH
	QSIGNAL
	QUEUE
	QUIESCE
	RESET event
	RESET key
	RETURN
	SAY
	SCROLL
	SELECT
	SETRH
	SETTH
	SIGNAL
	SNACMND
	STRING
	STRIPE
	SUSPEND
	SYSREQ
	TAB
	TERMSELF
	TRANSMIT
	TYPE
	USEREXIT
	UTI
	VERIFY
	WAIT

	Chapter 26. Reference to STL functions
	APPCLUID
	ATTR3270
	Restrictions on use of ATTR3270 function in asynchronous conditions

	BITAND
	BITOR
	BITXOR
	B2X
	CCOL
	CENTER
	CHAR
	CMONTH
	COFF
	COPIES
	CPOS
	CROW
	C2D
	C2X
	DATE
	DAY
	DBCSADD
	DBCSADJ
	DBCSDEL
	DBCS2SB
	DELSTR
	DELWORD
	DEVID
	D2C
	E2D
	FM
	HEX
	ID
	INDEX
	INSERT
	LASTPOS
	LASTVERB
	LEFT
	LENGTH
	LUID
	MONTH
	MSGTXTID
	NETID
	NL
	NUMCOLS
	NUMROWS
	OVERLAY
	PATHID
	POS
	POSTED
	PULL
	QUEUED
	RANDOM
	REPEAT
	REVERSE
	RIGHT
	RNUM
	ROWCOL
	SB2DBCS
	SB2MDBCS
	SESSNO
	SPACE
	STRIP
	SUBSTR
	Restrictions on use of the SUBSTR function in asynchronous conditions

	SUBWORD
	TAB
	TCPIPID
	TOD
	TPID
	TPINSTNO
	TRANSLATE
	UTBL
	UTBLMAX
	UTBLSCAN
	VTAMAPID
	WORD
	WORDINDEX
	WORDPOS
	WORDS
	X2B
	X2C
	YEAR

	Chapter 27. Keys valid for particular devices
	Chapter 28. Expressions not allowed in asynchronous conditions
	Chapter 29. STL reserved words
	Chapter 30. STL Variable and Named Constant Declarations for CPI-C Verb Parameters
	STL variable declarations for CPI-C verb parameters
	STL named constant declarations for CPI-C verb parameters

	Part 4. Appendixes
	Notices
	Trademarks and service marks

	Glossary
	Bibliography
	WSim Library
	Related publications

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

